
DevOps for z/OS demo
A hands-on guide for using the
Kobee for z/OS solution demo

2 Demo - Kobee DevOps for z/OS

Table of contents
Making changes to the samples and committing to Git...4

Edit the sample code...5

Stage the changes..5

Commit the changes..5

Sync you changes...5

Creating a Package and compiling the sample code..6

Verifying the result of the (compile) Build Level Request...9

Deploying (promote) the build to the Test and Production
environment.. 11

Verifying the (promote) Deploy Level Request...12

Part II, The Kobee setup for Administrators..13

Global Administration: Initial Overview...13

Looking at the z/OS Project... 16

The Build Level... 17

The Build Environment..18

The Build Environment and Phases parameters..19

Auditing the Project...19

The Test (and Production) Level..20

The Deploy Environment...20

Creating the Deploy Parameters ..21

Auditing the Project...21

The z/OS solution Phases...22

Phases...22

Models..22

Resource files...23

More intormation..23

3Demo - Kobee DevOps for z/OS

First let’s go through everything
that we have made available for
you

•	 Sample (mainframe) code which you
can customize.

•	 Visual Studio Code IDE (which has Git
integration to version your customized
files).

•	 A local file-based Git repository.

•	 Kobee preconf igured and with a
z/OS demo project.

Summary
This document will guide you through your
demo of DevOps for z/OS.

Kobee is the actual DevOps software prod-
uct on this demo virtual machine that you
will be working with. It is preconfigured
and set up with a predefined z/OS project
so you can start right away.

The purpose of this demo is to provide you
the experience of a standard Kobee user.
Such a user is able to create packages, and
launch mainframe compiles (builds) and
promotes (deploys). Global administration
and project administration is beyond the
scope of this demo.

4 Demo - Kobee DevOps for z/OS

We have made up a very basic scenario that you can follow during the demo.

Making changes to the samples and committing to Git
We’re using VS Code, but any IDE or editor will suffice. The only requirement for Kobee to work is that your files are ver-
sioned, in this case we chose Git as version control repository.

Open VS Code by clicking on the desktop icon. You will notice some files have already been opened and the folder in
which these files reside are located in the cloned Git repository (location: C:\ikan\workspace\demozos), this is your
workspace.

5Demo - Kobee DevOps for z/OS

In the following steps we’ll explain how to edit and commit the sample files.

Sync you changes
In Git you need to push the changes made in the
local repository to the remote repository.

Press the "Sync Changes" button.

Commit the changes
Click the "checkmark" to commit your changes.

You can enter your commit message in the box
below first (before pressing the button), or you
can do this afterwards in a pop-up.

Stage the changes

In Git you need to stage you changes before you
can commit.

Press the "plus sign" to stage you changes.

Edit the sample code

First edit the "ACCEPT1.cblbatch" file, you could
for instance just add some extra characters.

Save the file. You will see the color of the file in
the explorer change and "M" letter indicates it
has been modified.

Next, go to the "Source Control" view
(see the red arrow).

6 Demo - Kobee DevOps for z/OS

Creating a Package and compiling the sample code
Click the Kobee icon on your Windows desktop icon to open Kobee, and log in with the
following credentials:

Username: user
Password: user

You will be taken to the Kobee Desktop screen where you can see the Project Stream of our z/OS Demo project:
“DemoZOS_GIT”.

A Project Stream is a working entity within Kobee in which the lifecycles and their levels (Build, Test, Production) for
our Demo project are defined. It is automatically created when we create a project in Kobee.

In the image below you can see the Kobee hierarchy of our Demo project. We will get back to this topic in the second
part of this document.

NOTE: For our project the default “Head” Project Stream is sufficient, for complex projects you can define additional “Branch”
Project Streams (parallel development,…). You can read more about this in the Kobee User Guide.

7Demo - Kobee DevOps for z/OS

First let’s look at what’s inside the package that we are going to compile.

In the top menu click: "Packages > Overview Packages"

On this new screen click the "View" icon in the “Packages Overview” pane. This will take you to the “Package
Details” screen.

As you can see under the "View Contents” tab, we currently have 3 files in our package:
•	 	COPY1.copy	
•	 	ACCEPT1.properties	
•	 	ACCEPT1.cblbatch

In case you have edited other files (previously in VS Code) besides the ones above, you will need to add them to the
package by going to the “Edit Contents” tab, selecting your files and then hitting the "Save" button.

Now, let’s go back to the Kobee Desktop; in the top menu click: "Desktop".

We are ready to build our Demo project. In Kobee initiating a build (or deploy) process comes down to starting a “Level
Request”.

In this case, we request Kobee to retrieve our package files and perform all the actions that are defined in the build level:
“BUILDZOS”. In Kobee, the build and deploy actions are handled by Phases, more on this later.

Click the "Request" icon in the “BUILDZOS” tile of the Project Stream.

8 Demo - Kobee DevOps for z/OS

Select your package “Package-1” first.

Provide a meaningful description, but do not modify the VCR Tag entry. This tag is automatically generated and will be
created in Git when the build is successful.

Finally, hit the “Create" button, to start the Level Request. You will be taken back to the Kobee Desktop. There you will
notice that the Build Level tile has changed into a "running" state.

It's convenient to turn on the "Auto Refresh" switch (below the menu), so you don't have to refresh the page manually
while you're waiting.

NOTE: Optionally you can have a look at
the sources we modified in our
“Package-1” package by clicking the
“Show Modifications” link.

9Demo - Kobee DevOps for z/OS

Verifying the result of the (compile) Build Level Request
When the request had finished, you will see an green icon indicating the request has been successful.

The first line indicates the current Level Request, the second line indicates the latest
successful Level Request.

Click on the first “Level Request OID” link, next to this icon. This will take you to the
“Level Request Detail” page.

If you click on the “Phase Logs” tab you will see an ordered list of all the Phases that are used during the build process.

When you click the “Build # on machine kobee” bar, you can see the Phases that ran on the Build environment. Take
your time to go through all the Phases and their logs.

NOTE: When we created the build level (and connected the build environment) for this demo, Kobee automatically
set up all required general Phases. The only thing we had to do was to import the Phases that are specifically
made to support the z/OS build process. The Kobee Phases architecture is very easy to use and requires no
programming skills whatsoever.

10 Demo - Kobee DevOps for z/OS

Below is an example of the "z/OS Maps and Programs compilation" Phase log.

Under the “Results” tab you can see the actual compiled artifact.

We have created:
•	 a loadmodule: “ACCEPT1.load”
•	 a listing file: “ACCEPT1.listing”

NOTE: Because our demo setup is
minimal, other tabs such as
“Approvals”, “Issues” and
“Dependencies” are empty.

You can read more about these
features in the Kobee User Guide.

NOTE: Every build results is stored in the build archive (C:\ikan\ALM_system\buildArchive\DemoZOS_GIT\Main).
On the Build Environment location (C:\ikan\ALM_environments\DemoZOS_GIT\build), we left the sources and targets
from previous build Level Request as proof for you to see. Normally they are deleted automatically.

11Demo - Kobee DevOps for z/OS

Deploying (promote) the build to the Test and Production
environment

In the previous step we have built our source code. Now, we want to deploy that build result to our Test environment
and later on to our Production environment. Hence, we need a Test level and a Production level in our project lifecycle.

Go to the Kobee Desktop, there you will see a Test level “TESTZOS” tile and a Production
level “PRODZOS” tile, as we have already set this up for the demo.

Click the "Deliver" icon to initiate the Test (or the Deploy) Level Request.

On the "Deliver Build" page, select your package “Package-1” first.

As you can see the “Deliver Build” screen is almost identical to the “Request Build” screen except that here we can select
which build we want to deliver to the Test environment.

Provide a meaningful description, select the latest build by clicking on the table row and hit the “Create” button.

Again we head back to the Kobee Desktop and wait for the level request to finish.

NOTE: We can only select the build that is available on the build level “BUILDZOS”, that’s because the Test level is the next level
after the build level in the project lifecycle. In case we would have selected the deliver to production (in the “PRODZOS”
tile) instead, only the build that is on the Test level would be available.

12 Demo - Kobee DevOps for z/OS

Verifying the (promote) Deploy Level Request
Click on the first “Level Request OID” link in the "TESTZOS" tile. This will take you to the “Level Request Detail” page.

If you click on the “Phase Logs” tab you will see an ordered list of all the Phases that are used during the build process.

This is the end of our very short introduction focused on a typical developer. We only scratched the surface of the
possibilities of using DevOps on the mainframe with Kobee.

In the next part we will show you how the global and project setup was done in Kobee, for those who are interested in
the administrative part.

NOTE: When we created the deploy level and environment for this demo, Kobee automatically set up all required Core Phases
on the level and environment. The only thing we had to do was to import the Solution Phases that are specifically made
to support the z/OS promote process.

NOTE: On the Deploy Environment location (C:\ikan\ALM_environments\DemoZOS_GIT\testdeploy), we left the sources and
targets from previous deploy Level Request as proof for you to see. Normally they are deleted automatically.

13Demo - Kobee DevOps for z/OS

Part II, The Kobee setup for Administrators

Global Administration: Initial Overview

Let's start with verifying what is already set up in the Kobee Global Administration after a clean installation. We will
describe it shortly, if however, you want to know more about a specific topic, have a look at the respective chapters in
the Global Administration part of the Kobee User Guide.

Open Kobee and log in with the following credentials:

Username: global
Password: global

Click the "Global Administration" icon in the menu. In the overview panel click "System Settings".

Here you will see the Build Archive Location on the Kobee Server, where all the Build Artifacts (e.g., load modules,
deployable archives, …) will be stored after a successful build, so that they can be deployed later in the lifecycle. It is a
local path on the server, something like "C:/ikan/ALM_system/buildArchive", or "/opt/alm/system/buildArchive".

For the Kobee Core Phases, the Work Copy, Script and Phase Catalog Locations are defined.

Under "Machines > Overview" (in the submenu), you will find the definition of the Kobee machine.

14 Demo - Kobee DevOps for z/OS

If you click the "Edit" icon, you will see the details of the machine and the connected environments.

There is also an Agent installed on this Machine, and both Agent and Server processes are running as a service. The
Agents handle the Build and Deploy actions (bundled as Phases) on a specific Build, Test or Production environment.

If you go back and click the "Installed Phases" icon, you can see the Current Server Activity and the Current Agent
Activity, which should both be active (green icon).

15Demo - Kobee DevOps for z/OS

Under "Scripting Tools > Overview" (in the submenu), you can see that the “ANT 1.10.10” scripting tool is defined. This
tool is used by Kobee to execute Build and Deploy scripts. Click the "Edit" icon, for more details.

The Git repository is another key component in our Demo project setup. Kobee uses this repository to monitor and
retrieve the sample code files.

Under “Version Control Repositories > Overview”, you can click the “Edit” icon on the “demozos” entry for more
details.

16 Demo - Kobee DevOps for z/OS

Looking at the z/OS Project

In the Project Administration context, select "Project > Project Administration" and select the “DemoZOS_GIT” project
we created.

The Project Type is Package-based. A Package allows moving one or more individual files selected manually from a VCR
stream, this is a common way of working on the mainframe.

You can see that the Git repository “demozos” is connected to this project.

As mentioned in the first part: together with the Project, a
Head Project Stream is created that points to the master
branch of the project in Git.

If you go to “Project Streams > Overview“, then click the
“Edit” icon and then click the “Edit” button on the
“Project Stream Info” panel.

Here you can see all the options defined such as “Prefix”,
“Build Type”, “Accept Forced Build“, etc…

All of this is explained in the User Guide.

17Demo - Kobee DevOps for z/OS

The Build Level

A Build Level is the first level in the lifecycle and is responsible for building your code.

Under "Lifecycles > Overview" you will notice the BASE Lifecycle which is linked to the main Project Stream.

Click the "Edit" icon next to this Lifecycle, you will see all the levels that are connected to this BASE lifecycle.

Click the "Edit" icon on the "BUILDZOS" level, this is the Build Level. On the "Level Info" panel click the "Edit"
button.

Most fields speak for themselves (let's ignore the Notification, Schedule and Requester fields for now).

Activating the Debug option makes it easier to track things in the beginning, especially when a Build fails. Once every-
thing runs smoothly, you can disable it.

Click the "Cancel" button.

When we create a level, the Phases linked to that Level are automatically created as well. Those Phases will be executed
when a Level Request is initiated.

You can see the Phases by selecting the “Edit Phases” link underneath the “Phases Overview” panel.

18 Demo - Kobee DevOps for z/OS

The Build Environment

A (Build) Level is a conceptual step in the Lifecycle. We still need a physical machine to execute our Build on, so we have
to link a Build Environment (the machine we will build on) to the Build Level.

Click "Build Environments > Overview", the click the "Edit" icon for the "ZOSBUILD" environment.

Just as for the Level, the Phases linked to the Environment are created together with the Build Environment. They will
be executed when the Build of a Level Request will be executed on the Kobee Agent.

Kobee always starts by transferring the sources to the “Source location” and placing the result in the “Target Location”.
These locations are automatically cleaned up when the Level Request has finished, unless we have chosen to use the
debug function.

If you click the “Edit” button in the “Build Environment Info” panel, you can see we have set “Downloadable Build”
option to “Yes”, so we are able to download the build result.

NOTE: The source and target locations can be chosen freely. In our example it is “C:/ikan/ALM_environments/DemoZOS_GIT/
build/”.

NOTE: In order to distinguish Levels from Environments, we use uppercase for the level and lowercase for the environment
directories. Levels and Environments can have the same name.

19Demo - Kobee DevOps for z/OS

The Build Environment and Phases parameters

Phases can -or sometimes must- be provided with additional information in the form of parameters. For example: a
Phase may need a location of a specific resource. This enables a high level of customization without the need to alter
the Phase’s inner mechanics. The Phase parameters make it possible to customize the build and deploy process with
minimum effort and without the need of programming skills.

Phase parameters can be set on various entities: Machines, Environments and Phases, following a cascading order.

For the z/OS solution we are working with Phase Models, Resources and Scripts that are tailored to the client’s main-
frame environment and integrated into Kobee by the z/OS Phases and Phase parameters.

Auditing the Project

When creating or making changes to a level, Kobee automatically blocks the level and requires the user to run a project
audit prior to using it. This project audit is a verification process performed by Kobee which checks the project setup
consistency.

On the overview, you will see most of the different objects we created.

The information screen for our Project displays the Build Archive of the Head Project Stream (where our future Builds will
be stored) and the Build Level containing one Build Environment on the Kobee Agent, where the build will be executed.

20 Demo - Kobee DevOps for z/OS

The Test (and Production) Level

A Test Level is the next level (in our lifecycle) after the Build Level and is responsible for delivering the build to the Test
department. Likewise a Production Level is the next level after the Test Level. Since Test Levels and Production Levels
are similar, apart from the notification options, this topic applies to both.

In the Project Administration section, edit the Project.

Go to “Levels > Overview”, click the “Edit” icon for the “TESTZOS” level and then click the “Edit” button on the
“Level Info” panel.

The Deploy Environment

Similar to Build Level, the Test Level (or Production Level) is just a conceptual step in the lifecycle. We need a physical
Machine to which we can deploy our Build result, so we need to link a Deploy Environment to the Level.

Go to “Deploy Environments > Overview”, click the “Edit” icon for the “ZOSTEST” environment and then click the
“Edit” button on the “Deploy Environment Info” panel.

21Demo - Kobee DevOps for z/OS

This is almost similar to a Build Environment.

The deploy will be executed by the Kobee Agent on the selected Machine. We have “ZOSBUILD” selected as “Build
Environment” to indicate that we want to deploy the result of our Build Environment to our Deploy Environment.

The Build result previously created will be extracted in the “Source Location”.

You can view the Phases that will be executed during the deployment (Level Request) to this Deploy Environment in the
“Phases Overview” panel.

Creating the Deploy Parameters

What we did earlier for the Build parameters, should also be done for the deploy parameters on the Deploy Environment
and on the deployment Phases.

We have set these already according to our z/OS Demo project setup.

You can see them by going to “Deploy Environments > Deploy Parameters” for the environment and for the machine by
going to “Global Administration > Machines > Machine Parameters”.

Auditing the Project

Just as for the Build Level, we needed to audit the project first to unlock the Test and Prod Levels.

22 Demo - Kobee DevOps for z/OS

The z/OS solution Phases
Phases represent specific tasks or actions that must be performed on the Levels and Environments.

Kobee comes with a set of “Core” Phases, “Solution Phases” such as the z/OS Phases, but you can also create your own
“Custom Phases” which gives you endless possibilities.

The main advantage of using Phases is that they allow you to customize your project's workflow with reusable building
blocks. On top of that, they can be shared and distributed onto local and remote machines.

We will shortly cover the three major components: the Phases, the Resource files and the Model files that are used by
the z/OS solution on Kobee.

Phases

The z/OS Phases are used to run different z/OS tasks. Most of these Phases will generate JCL that will be submitted for
execution on the z/OS mainframe machine.

Models

For the previously mentioned JCL generation we use predefined JCL Models. See the sample below for a sample JCL
Model for a CICS pre-compile compilation.

//***

//** CICS-PRECOMPILE PROGRAM **

//***

// SET CICSPGM='${cics.lang.program}'

// SET CICSOPT='${cics.lang.parms}'

//PCICS EXEC PGM=&CICSPGM,REGION=4M,COND=(4,LT),

// PARM='&CICSOPT',MAXRC=${cics.lang.rcmax}

//STEPLIB DD DSN=${cics.prefix}.${cics.lang.linklib},DISP=SHR

//SYSPRINT DD SYSOUT=*

//*YSPRINT DD DISP=(MOD,PASS),DSN=&&PCMPLIST,

//* UNIT=SYSDA,SPACE=(CYL,(10,10)),

//* DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)

//SYSPUNCH DD DSN=&&SYSCIN,DISP=(,PASS),

// UNIT=${env.zos.unit},DCB=BLKSIZE=400,

// SPACE=(400,(400,400))

//SYSIN DD DSN=&&&SRCOMPIL,DISP=(OLD,PASS)

// SET SRCOMPIL=SYSCIN

23Demo - Kobee DevOps for z/OS

Resource files

The JCL Model files have parameters defined (e.g. ${cics.lang.program}) that are substituted by the values from the
Resource files. Below is a sample of a some properties in a CICS Build resource file.

When we combine these three components we get the following:

For this demo project setup we have already defined everything. In order to use the z/OS solution in your company’s
environment, you will need to adapt the model and resource files.

The z/OS configuration (including the resources and models configuration) is managed by the Kobee Resource
Configurator application, more about this in the "Kobee DevOps for z/OS mainframe" document which covers the entire
solution setup (https://www.kobee.io/documents/integrations/zos/kobee-devops-for-zos-mainframe.pdf).

More intormation
For more in-depth information, refer to the following documentation on: https://docs.kobee.io
•	 Kobee User Guide
•	 How to Guide - Using and Developing Custom Phases in Kobee
•	 Kobee Installation Guides

--

Properties for CICS

--

cics.name=CICSTEST

cics.TOR.name=CICTTEST

cics.FOR.name=CICFTEST

cics.prefix=DFH320.CICS

https://www.kobee.io/documents/integrations/kobee-devops-for-zos-mainframe.pdf
https://www.kobee.io/documents/integrations/zos/kobee-devops-for-zos-mainframe.pdf
https://docs.kobee.io

© Copyright 2024 IKAN Development N.V.

The IKAN Development and Kobee logos and names and all other IKAN product or service names are trademarks of IKAN Development N.V. All other
trademarks are property of their respective owners. No part of this document may be reproduced or transmitted in any form or by any means,
electronically or mechanically, for any purpose, without the express written permission of IKAN Development N.V.

IKAN Development
Motstraat 30

2800 Mechelen, Belgium
Tel. +32 15

info@kobee.io
www.kobee.io

