7Kobee

DevOps for z/OS demo

A hands-on guide for using the
Kobee for z/OS solution demo

Table of contents

Making changes to the samples and commItting t0 Gitccevueveririnenenieniineeeeceeeeeen 4
Edit the SAMPLE COAR ittt b e et e b e b e sa e b e reenes 5
STAEE ThE CHANEES ...ttt ettt et 5
CoOMMIt thE ChANGES .ttt sttt ettt ettt 5
SYNC YOU CRANEES ...ttt ettt ettt ettt et sb bbb e e et ne b ee 5

Creating a Package and compiling the sample code ..o 6

Verifying the result of the (compile) Build Level REQUESL......cc.eevueeriririrerireieeeeeeeeeee e 9

Deploying (promote) the build to the Test and Production

ENVITONIMENT (. cteitiieieirt ettt ettt ettt ettt b b b e st et et et s bt s bt e b et e st e bt bt besbesaeneenis 11

Verifying the (promote) Deploy LEVEL REQUESTccveueieeeieieiieeieeeieieeee et e 12

Part Il, The Kobee setup for Administrators.......ccoevieererieieiinieneneieesesesesessesseseeessessessessennens 13
Global Administration: INitial OVErVIEWccceeverieiieiirinirereeteee et 13
LOOKING @t the Z/OS ProjeCt.....ccvueiviiiririeirieierieerieeste ettt ettt 16
THE BUILA LEVEL ..ttt sttt sttt se e 17
The BUild ENVIFONMENT ..ottt ettt ettt st es 18
The Build Environment and Phases parameters........oecceceeeereeeeseseeeeneeeeseeseessesvesneeens 19
AUAItING The PrOJECE .ttt sttt ettt 19
The Test (aNd Production) LEVELccicvevieieieeeeeeeteceeteeteee ettt eere et eve et essennees 20
The Deploy ENVIFONMENTooviiiieiiirieieietee ettt te sttt et esessessessessesessaesassassessensans 20
Creating the Deploy Parameters ... ceieereneneieieeeiceie ettt sttt 21
AUAItING The PrOJEC .ttt sttt sttt st 21

THE Z/OS SOIULION PRASES ...veeeeeieeeeeee ettt ettt s e e et s ssate s sbeesebaeesnaeessnneessnaeeennnns 22
PRASES ettt ettt b et bttt b et b et bttt es 22
MOAELS. ..ttt ettt ettt s b et et e et et e b b e b et et et ne e b sa et e aentene 22
RESOUICE fIlES ittt ettt b et sttt st sttt b ettt es 23

MOFE INEOIMATION ..ttt ettt e sae st s et e b e e b e sae e e e sbe s e enbesseeneenne 23

_ Demo - Kobee DevOps for z/OS

Summary

This document will guide you through your First let’s go through everything
demo of DevOps for z/OS. that we have made available for
you

Kobee is the actual DevOps software prod- . _

e Sample (mainframe) code which you

uct on this demo virtual machine that you :
can customize.

will be working with. It is preconfigured

and set up with a predefined z/0OS project e Visual Studio Code IDE (which has Git

50 you can start right away. integration to version your customized
files).

The purpose of this demo is to provide you o Alocal file-based Git repository.

the experience of a standard Kobee user.

Such a user is able to create packages, and e Kobee preconfigured and with a
z/0S demo project.

launch mainframe compiles (builds) and
promotes (deploys). Global administration
and project administration is beyond the
scope of this demo.

Kobee “Demo ” Components “Demo” setup for Mainframe DevOps

VS Code IDE Git (local) Maln;‘rame Mainframe

compile

No actual
Sample code files used as example [} mainframe

Local folders are

“environments”

deployment
instead F

environments: [fJ] oeveropment 3] Test [E] PropucTION

Demo - Kobee DevOps for z/OS _

We have made up a very basic scenario that you can follow during the demo.

Kobee “Demo ” Components “Demo” flow for Mainframe DevOps

Edit the sample 2) Create a build

files in VS Code in Kobee

Commit changes Verify the build
to Git using
VS Code

Deliver to Test
and Production

9

Verify the depoy

N

5

Making changes to the samples and committing to Git

We’re using VS Code, but any IDE or editor will suffice. The only requirement for Kobee to work is that your files are ver-
sioned, in this case we chose Git as version control repository.

Open VS Code by clicking on the desktop icon. You will notice some files have already been opened and the folder in
which these files reside are located in the cloned Git repository (location: C:\ikan\workspace\demozos), this is your
workspace.

] File Edit Selection View Go Run Terminal Help
= ACCEPT1.cblbatch X

tch

IDENTIFICATION DIVISIO

PROGRAM-ID. CEPT1.

AUTHOR. GERARD PRO ST.

* Uses the ACCEPT and DISPLAY verbs to ept a student record
* from th and di y some of the f o shows how
* the ACCEPT may be used to get the system date and time.

DETFU
IBMPL i * The YYYYMMDD in “ACCEPT Current Date FROM DATE YYYYMMDD."
* is a format command that ensures that the date contains a
git year. If not used, t ar supplied by t ystem will

* only contain two digits which may cause a problem in the year 2888.

4 ORAGE SECTION.
81 StudentDetails.
@2 Studentid PIC 9(7).
82 StudenthName.
83 Surname
83 Initials

_ Demo - Kobee DevOps for z/OS

In the following steps we’ll explain how to edit and commit the sample files.

View Go Run Terminal

File Edit

Help

Selection

< ACCEPT1.cblbatch M X

\CCEPT1.cblbatch
cblbatch
tch.to_be dele

cblbatch
DETFUE.asm
IBMPLITS.pli
ZSQL10.cblbatch
2010.cblbatch

Stage the changes

In Git you need to stage you changes before you
can commit.

Press the "plus sign" to stage you changes.

File Edit Selection View Run Terminal Help

* Staged Changes
= ACCEPT1.cblbatch

%

~ Changes

Sync you changes

In Git you need to push the changes made in the
local repository to the remote repository.

Press the "Sync Changes" button.

*

*

|-.
IDENTIFICATION DIVI
PROGRAM-ID. ACCEPT)
AUTHOR. GERARD PR
Uses the ACCEPT an
from the u and

* the ACCEPT may be

* The YYYYMMDD in "A|
* is a format comman
* 4 digit year. If

* only contain two d

File Edit

L

Changes

Edit the sample code

Selection View Go

First edit the "ACCEPT1.cblbatch" file, you could
forinstance just add some extra characters.

Save the file. You will see the color of the file in
the explorer change and "M" letter indicates it
has been modified.

Next, go to the "Source Control" view
(see thered arrow).

Run Terminal Help

= ACCEPT1.cblbaich 39 + m

IDENTIFICATION DIVI
PROGRAM-ID. ACCEPT)
AUTHOR. GERARD PR
" Uses the ACCEPT an
" from the user and
* the ACCEPT may be

* The YYYYMMDD in ™Al

" is a format comman

* 4 digit year. If

" only contain two d

File Edit

<3 Sync Changes 11

oo

* from the us
* the ACCEPT may be

* The YYYYMMDD in "4
s a format comman

* 4 digit year. If

* only contain two d

Commit the changes

Selection

Click the "checkmark" to commit your changes.

You can enter your commit message in the box
below first (before pressing the button), or you
can do this afterwards in a pop-up.

View Run Terminal

Help
= ACCEPT1.cblbatch X
IDENTIFICATION DIVI

PROGRAM-ID. ACCEPT]
AUTHOR. GERARD PR

* Uses the ACCEPT an

* from the r and
* the ACCEPT may be

* The YYYYMMDD in "4
* is a format comman
* 4 digit year. If

* only contain two d

Demo - Kobee DevOps for z/OS _

Creating a Package and compiling the sample code

Click the Kobee icon on your Windows desktop icon to open Kobee, and log in with the
following credentials:

L' Username: user

Password: user

You will be taken to the Kobee Desktop screen where you can see the Project Stream of our z/OS Demo project:
“DemoZ0S_GIT”.

-—

’ Kobee Desktop Level Requests ¥ Packages v Approvals = Q: v o=

Desktop > Desktop) Auto Refresh () View as Tiles (@)

B -

= Project Stream: DemoZOS5_GIT / H_Main

- IR LN L

BUILDZOS #9 TESTZ0S #9 PRODZOS #9
o 15 [6/9/22, 9:01 AM] = o 16 [6/9/22, 9:11 AM] = o 17 [6/9/22, 9:13 AM] =
o 15 [6/9/22, 9:01 AM] o 16 [6/9/22, 9:11 AM] o 17 [6/9/22, 9:13 AM]

A Project Stream is a working entity within Kobee in which the lifecycles and their levels (Build, Test, Production) for
our Demo project are defined. It is automatically created when we create a project in Kobee.

NOTE: For our project the default “Head” Project Stream is sufficient, for complex projects you can define additional “Branch”
Project Streams (parallel development,...). You can read more about this in the Kobee User Guide.

In the image below you can see the Kobee hierarchy of our Demo project. We will get back to this topic in the second

part of this document.

u Kobee ("Demo” setup)

“DemoZ0S_GIT” PROJECT
| Linked to version control repasitary

“H_Main” PROJECT STREAMS
Head linked to Trunk, branches for releases

“BASE" LIFE CYCLES
Ongoing development, releases, maintenance

“BUILDZOS", “TESTZOS, "PRODZOS” [-1, LEVELS
l; Logical Build, Test and Production

“ZOSBUILD", “ZOSTEST, "ZOSPROD" ENVIRONMENTS
Physical Build, Test and Production machines

— PHASES
=== Build and Deploy actions

_ Demo - Kobee DevOps for z/OS

First let’s look at what’s inside the package that we are going to compile.
In the top menu click: "Packages > Overview Packages"

On this new screen click the "View" icon " in the “Packages Overview” pane. This will take you to the “Package
Details” screen.

As you can see under the "View Contents” tab, we currently have 3 files in our package:
e COPYl.copy

e ACCEPT1.properties

e ACCEPT1.cblbatch

, Kobee Desktop Level Requests v+ Packages » Approvals v Q: v "_—‘--_

Desktop > Package Details) Auto Refresh ()

Package-1 Demoz0s GIT/ Main
| ') 0id: 2 - Package-1 demo
Status: Active

S

Summary View Contents Edit Contents Lifecycle Actions

< _Back | Refresh

File and Revisions Info

oo [N

Jcopy COPY1.copy
/properties ACCEPT1.properties
Jsrb ACCEPT1.cblbatch

3 items found, displaying all

In case you have edited other files (previously in VS Code) besides the ones above, you will need to add them to the
package by going to the “Edit Contents” tab, selecting your files and then hitting the "Save" button.

Now, let’s go back to the Kobee Desktop; in the top menu click: "Desktop".

We are ready to build our Demo project. In Kobee initiating a build (or deploy) process comes down to starting a “Level
Request”.

In this case, we request Kobee to retrieve our package files and perform all the actions that are defined in the build level:
“BUILDZOS”. In Kobee, the build and deploy actions are handled by Phases, more on this later.

Click the "Request" ’ icon in the “BUILDZ0S” tile of the Project Stream.

- 7

BUILDZOS #9
o 15 [6/9/22, 9:01 AM] IS
ok 15 [6/9/22, 9:01 AM]

Demo - Kobee DevOps for z/OS

Select your package “Package-1” first.

Request Build Demoz0s_GIT / H_Main / Please select a Package ~ / BUILDZOS
’ Demo Z0S using Package GIT

Package-1 - Package-1 demo

Provide a meaningful description, but do not modify the VCR Tag entry. This tag is automatically generated and will be
created in Git when the build is successful.

, Kobee Desktop Level Requests ¥ Packages » Approvals = Q: - E

Desktop > Create Level Request o

Demo Z0S using Package GIT
Active Build Number: 5

’ Request Build bpemozos_GIT / H_Main / Package-1 / BUILDZOS

4 Back | 4 Show Additional Info | 4 Show Modifications

Description [compile the content of Package-1|

4
Previous Descriptions - .
] NOTE: Optionally you can have a look at
Build Number &
VCR Tag |H_Main_Package-1_b6 the sources we modified in our
| Create | Res “Package-1” package by clicking the

“Show Modifications” link.

Finally, hit the “Create" button, to start the Level Request. You will be taken back to the Kobee Desktop. There you will
notice that the Build Level tile has changed into a "running" state.

’ Kobee Desktop Level Requests + Packages » Approvals = Q: v 5

Desktop > Desktop () Auto Refresh ((JI) View as Tiles ()

B -

=] Project Stream: DemoZ0S_GIT / H_Main

A 7 e 7% g 2N

BUILDZOS #9 TESTZOS #9 PRODZOS #9
=~ 18 [6/9/22, 11:48 AM] = o 16 [6/9/22, 9:11 AM] = o 17 [6/9/22, 9:13 AM] =
o 15 [6/9/22, 9:01 AM] o 16 [6/9/22, 9:11 AM] o 17 [6/9/22, 9:13 AM]

[Refresh | Add to Desktop |

It's convenient to turn on the "Auto Refresh" switch (below the menu), so you don't have to refresh the page manually
while you're waiting.

_ Demo - Kobee DevOps for z/OS

Verifying the result of the (compile) Build Level Request

When the request had finished, you will see an green icon indicating the request has been successful.

> The first line indicates the current Level Request, the second line indicates the latest
o ’ successful Level Request.
BUILDZOS #9
m:: 15 [6/0/22, .01 aM] i Click on the first “Level Request OID” link, next to this icon. This will take you to the
‘ o 15 [6/9/22, 9:01 AM] “Level Request Detail” page.

’ Kobee Desktop Level Requests ¥ Packages + Approvals « Q: r ==

-

Desktop = Level Request Detail 0 Auto Refresh C‘

18 : Build for documentation

I Success DemoZ0S GIT/ H Main / Package-1 / BUILDZOS / Build 10
Requested by: user on: 6/9/22, 11:48:21 &AM

Summary Phase Logs Results Approvals Issues Sources Modifications Dependencies

4 _Back | Refresh | Build History

I
@ Actions @ Info 1:% Builds & Deploys
= Deliver to TESTZ0S Build Number 10 !Emml
11

VCR Tag H_Main_Package-1_b10 ZOSBUILD ikanalm
Action Request Build
Type Builds based on latest code
Start 6/9/22, 11:48:22 AM
Duration 00:01:02

Show more...

If you click on the “Phase Logs” tab you will see an ordered list of all the Phases that are used during the build process.

When you click the “Build # on machine kobee” bar, you can see the Phases that ran on the Build environment. Take
your time to go through all the Phases and their logs.

NOTE: When we created the build level (and connected the build environment) for this demo, Kobee automatically

set up all required general Phases. The only thing we had to do was to import the Phases that are specifically

made to support the z/OS build process. The Kobee Phases architecture is very easy to use and requires no
programming skills whatsoever.

Demo - Kobee DevOps for z/OS _

Below is an example of the "z/OS Maps and Programs compilation" Phase log.

- z/ 05 Maps and Programs compilation 5/24/22,11:23:11 AM
Phase z/0S Maps and Programs compilation - 2.1.0 Duration 00:00:21
Start Date/Time 5/24/22, 11:23:11 &M Status Success

v Phase Parameters

Key Value

alm.phase.extractBundle true

alm.phase.mainScript zosCompilation.xml

propsfile.Janguages ${dirzosResources}/BUILD/languagesZ0S.properties

v Message

script Execution successful.
Execution results in : C:/ikan/ALM_environments/DemoZos_GIT/build/target/7

v Log
" Download Log
[eche] ALM License found!

[echo] Load C:/ikan/ALM_system/Z0s/PhaseResources/osfamily.properties
[echo] WARNING: Mo C:/ikan/ALM_environments/DemcZ0S_GIT/build/source/7/DemoZ0S_GIT/DemoZ0S_GIT.properties file foumd for this project.

[echa] pefault project properties are used.
[eche] Level: BUILDZOS Config: Z0S - Action: Requested Build START
[eche] JOB execution 14.23.28 JOB8@44% ---- TUESDAY, 24 MAY 2822 ----

[eche] File ACCEPT1 was successful on ZOS.

[eche] *** COMPILE ZO0S for ACCEPT1 submitted to z/05 with success ***
[eche] Generated Member files are copied from zZOs.

[echo] DSHs IKAMALM.DEMOS.Pe@@eee2... are deleted on Zos.

BUILD SUCCESSFUL
Total time: 28 seconds

" Download Log

Under the “Results” tab you can see the actual compiled artifact.

We have created: |
e aloadmodule: “ACCEPT1.load” E Results

* alistingfile: "ACCEPTL.listing”

Build File Name pemoz0S_GIT_H_Main_Package-1_b7_BUILDZOS.zip
. File Size 17 KB
NOTE: Because our demo setup is Archive Status Present
minimal, other tabs such as

v Expand All | ¥ Collapse All

“Approvals”, “Issues” and
-1 [=1DemoZ0S_GIT_H_Main_Package-1_b7_BUILDZOS.zip

+} 57 copy

- [=1listing

You can read more about these | ACCEPT1.listing, 523828, 1:10 PM
- =1 load

| ACCEPT1.load, 81608, 1:10 PM
+ [properties

+ DSI‘b

“Dependencies” are empty.

features in the Kobee User Guide.

NOTE: Every build results is stored in the build archive (C:\ikan\ALM_system\buildArchive\DemoZOS_GIT\Main).
On the Build Environment location (C:\ikan\ALM_environments\DemoZOS_GIT\build), we left the sources and targets
from previous build Level Request as proof for you to see. Normally they are deleted automatically.

n Demo - Kobee DevOps for z/OS

Deploying (promote) the build to the Test and Production
environment

In the previous step we have built our source code. Now, we want to deploy that build result to our Test environment
and later on to our Production environment. Hence, we need a Test level and a Production level in our project lifecycle.

Go to the Kobee Desktop, there you will see a Test level “TESTZOS” tile and a Production
L/ " ‘ level “PRODZOS” tile, as we have already set this up for the demo.

TESTZOS #9
ok 16 [6/9/22, 9:11 AM] IS
o 16 [6/9/22, 9:11 AM]

Click the "Deliver" icon "’ to initiate the Test (or the Deploy) Level Request.

On the "Deliver Build" page, select your package “Package-1” first.

Asyou can see the “Deliver Build” screen is almost identical to the “Request Build” screen except that here we can select
which build we want to deliver to the Test environment.

, Kobee Desktop Level Requesis v Packages » Approvals » Q: - E

Desktop > Create Level Request e

Demo Z0S using Package GIT

Deliver Build opemozos_cIT/ H_Main / Package-1 / TESTZOS
7
Ly Active Build Number: 5

4 Back | #* Show Additional Info
I]

Description Deploy Package-1

Previous Descriptions
Requested Date/Time
Selected Build s

B S S

11 compile Package-1 BUILDZOS H_Main_Package-1_b& 5/24/22, 11:23:33 AM
+ 5 8 test config pds BUILDZOS H_Main_Package-1_b5 5/23/22, 9:08:02 AM

#4

Provide a meaningful description, select the latest build by clicking on the table row and hit the “Create” button.

NOTE: We can only select the build that is available on the build level “BUILDZ0S”, that’s because the Test level is the next level
after the build level in the project lifecycle. In case we would have selected the deliver to production (in the “PRODZ0S”
tile) instead, only the build that is on the Test level would be available.

Again we head back to the Kobee Desktop and wait for the level request to finish.

Demo - Kobee DevOps for z/OS _

Verifying the (promote) Deploy Level Request

Click on the first “Level Request OID” link in the "TESTZOS" tile. This will take you to the “Level Request Detail” page.

s 2R

TESTZ05 #£9

i 16 [6/9/22, 9:11 AM] IS

‘ o 16 [6/9/22, 9:11 AM]

If you click on the “Phase Logs” tab you will see an ordered list of all the Phases that are used during the build process.

NOTE: When we created the deploy level and environment for this demo, Kobee automatically set up all required Core Phases
on the level and environment. The only thing we had to do was to import the Solution Phases that are specifically made
to support the z/OS promote process.

= Deploy 7 on machine ikanalm 6/9/22, 9:09:50 Al

OoID 7 Start Date/Time 6/9/22, 9:09:50 AM
Environment ZOSTEST Duration 00:01:34
Machine ikanalm Status Success

% Deploy Parameters

% = Transport Build Result

% = Decompress Build Result

% = z/0S Copy from Source folder to Target folder
% = z/0S Demote components and load-modules
% = z/0S Promote components and load-modules
% = z/0S Promote Debugger components

3 = 7z/0S Delete Sources and their associated objects
% = z/0S DB2 Binds transfer and activation

» == z/0S Applying SQL files on DB2

» = z/0S Cics Load-modules activation

% = Cleanup Build Result

6/9/22, 9:10:41 AM
6/9/22, 9:10:41 AM
6/9/22, 9:10:41 AM
6/9/22, 9:10:47 AM
6/9/22, 9:10:50 AM
6/9/22, 9:11:07 AM
6/9/22, 9:11:10 AM
6/9/22, 9:11:14 AM
6/9/22, 9:11:18 AM
6/9/22, 9:11:21 AM

6/9/22, 9:11:24 AM

NOTE: On the Deploy Environment location (C:\ikan\ALM_environments\DemoZOS_GIT\testdeploy), we left the sources and
targets from previous deploy Level Request as proof for you to see. Normally they are deleted automatically.

This is the end of our very short introduction focused on a typical developer. We only scratched the surface of the
possibilities of using DevOps on the mainframe with Kobee.

In the next part we will show you how the global and project setup was done in Kobee, for those who are interested in
the administrative part.

n Demo - Kobee DevOps for z/OS

Part Il, The Kobee setup for Administrators

Global Administration: Initial Overview

Let's start with verifying what is already set up in the Kobee Global Administration after a clean installation. We will
describe it shortly, if however, you want to know more about a specific topic, have a look at the respective chapters in
the Global Administration part of the Kobee User Guide.

Open Kobee and log in with the following credentials:

Username: global
Password: global

Click the "Global Administration" icon in the menu. In the overview panel click "System Settings".

Here you will see the Build Archive Location on the Kobee Server, where all the Build Artifacts (e.g., load modules,
deployable archives, ...) will be stored after a successful build, so that they can be deployed later in the lifecycle. Itis a
local path on the server, something like "C:/ikan/ALM_system/buildArchive", or "/opt/alm/system/buildArchive".

For the Kobee Core Phases, the Work Copy, Script and Phase Catalog Locations are defined.

Local Environment

IKAN ALM Server ikanalm - *
IKAN ALM URL http://ikanalm:8080/alm ®

Local File Copy Locations

Work Copy Location
Build Archive Location
Script Location

Phase Catalog Location

Relative Locations (Remote Transporters)

Work Copy Location
Build Archive Location
Script Location
Phase Catalog Location
Transporter Protocol Settings
55H Port
FTP Port

C:fikan/ALM_system/workCopy
C:fikan/ALM_system/buildArchive
C:fikan/ALM_system/deployScripts
C:fikan/ALM_system/phaseCatalog

system,/workCopy
system/buildarchive
system/deployScripts
system/phaseCatalog

22
21

Under "Machines > Overview" (in the submenu), you will find the definition of the Kobee machine.

Machines Overview

.......m Operating System | DHCP Enabled | DHCP Name | IP Address | Agent Port Transporter Prg

Jlal Z ® 8 = em ikanalm ALM server machine WINDOWS

One item found
Search Criteria: No Criteria defined

20021 Local FileCopy

Demo - Kobee DevOps for z/OS

If you click the "Edit" icon, T you will see the details of the machine and the connected environments.

There is also an Agent installed on this Machine, and both Agent and Server processes are running as a service. The
Agents handle the Build and Deploy actions (bundled as Phases) on a specific Build, Test or Production environment.

Edit Machine

Name ikanalm *

Description ALM server machine

Operating System WINDOWS v *
DHCP Enabled @ vYes O No
DHCP Mame ikanalm *
IP Address

Agent Port 20020
Server Port 20021
Transporter Protocol Local FileCopy v *
Locked (Yes @ No

Concurrent Deploy Limit 0 *

&9 History | Save | Refresh | Back |

If you go back and click the "Installed Phases" icon, = you can see the Current Server Activity and the Current Agent
Activity, which should both be active (green icon).

Current Server Activity: Idle () Ccurrent Agent Activity: Idle ()
Show Core Phases (Yes (O No @ All Show Core Phases (Yes (No @ All
Installed Server Phases Installed Agent Phases
L — e W e —
com.ikanalm.phases.core.level.build 5.9.0 com.ikanalm. phases.core.build. archive.result 5.9.0
com.ikanalm.phases.core.level.cleanup 5.9.0 ,/ com.ikanalm. phases.core.build. cleanup.result 5.9.0
com.ikanalm.phases.core.level.deploy 5.9.0 4 com.ikanalm.phases.core.build. cleanup.source 5.9.0
com.ikanalm.phases.core.level.issue.tracking 5.9.0 v com.ikanalm. phases.core.build. compress.result 5.9.0
com.ikanalm.phases.core.level.link.filerevisions 5.9.0 s com.ikanalm. phases.core.build. transport.deployscript 5.9.0
com.ikanalm.phases.core.level.retrieve.source 5.9.0 4 com.ikanalm. phases.core.build.transport.packageresults 5.9.0
com.ikanalm.phases.core.level.tag 5.9.0 4 com.ikanalm.phases.core.build.transport.source 5.9.0
com.ikanalm.phases.core.scripting.scriptingPhase 5.9.0 + com.ikanalm. phases.core.build. verify.buildscript 5.9.0
com.ikanalm.phases.core.deploy.cleanup. buildfiles 5.9.0

8 items found, displaying all
com.ikanalm.phases.core.deploy.decompress.buildresult 5.9.0

com.ikanalm.phases.core.deploy.transport. buildresult 5.9.0

com.ikanalm.phases.core.deploy.verify.deployscript 5.9.0
com.ikanalm.phases.core.scripting.scriptingPhase 5.9.0
com.ikanalm. phases.mainframe.zosBindDb2 2.1.0
com.ikanalm. phases.mainframe.zosCompilation 2.1.0
com.ikanalm.phases.mainframe.zosCopyForCompilation 2.1.0
com.ikanalm.phases.mainframe.zosCopySourceToTarget 2.1.0
com.ikanalm.phases.mainframe.zosDeleteObsoleteFiles 2.1.0
com.ikanalm.phases.mainframe.zosDemaotion 2.1.0
com.ikanalm. phases.mainframe.zosPromotion 2.1.0
com.ikanalm.phases.mainframe.zosSqlDb2 2.1.0
com.ikanalm. phases.mainframe.zosUpdateCics 2.1.0
com.ikanalm.phases.mainframe.zosUpdateDebugger 2.1.0

23 items found, displaying all

n Demo - Kobee DevOps for z/OS

Under "Scripting Tools > Overview" (in the submenu), you can see that the “ANT 1.10.10” scripting tool is defined. This
tool is used by Kobee to execute Build and Deploy scripts. Click the "Edit" icon, for # more details.

Scripting Tools Overview

I T

A ® [E ANT1.10.10
/ ® E NANT0.92

2 items found, displaying all

Ant build tool

NANT NAnt build tool

Search Criteria: No Criteria defined

The Git repository is another key component in our Demo project setup. Kobee uses this repository to monitor and
retrieve the sample code files.

Under “Version Control Repositories > Overview”, you can click the “Edit” icon 7/ on the “demozos” entry for more

details.

Name

Description

Command Path

Cache Location
Repository URL
Repository Push URL
Default Branch Name
User ID

Password

Repeat Password
Time-Out (Sec.)

Omit Blobs When Cloning

History

Edit Git Repository

demozos

DemoZ0S internal Git

C:/ikan/ALM_systam/PhaseTools/git-2.35.1/bin
C:/ikan/ALM_systam/gitCache/demozos
fila:///C:/ikan/repositories/git/demaozos. git

master

260

@ves ()No

—_

Connected Projects

DemoZOS_GIT Demo Z0S using Package GIT Package-based

One item found

Demo - Kobee DevOps for z/OS _

Looking at the z/OS Project

In the Project Administration context, select "Project > Project Administration" and select the “DemoZOS_GIT” project
we created.

’ Kobee Desktop Level Requests ¥+ Packages v Approvals » Q: - 5

D Gl elgl History Log Project Stream v Lifecycles ¥ Levels v Build Environments ¥ Deploy Environments Audit Project

Project Administration > Project Info 0

| gl minitraion S s

QE Project Info History Log “| create B
Y5 Audit Project " Create T

I —— ") Create P

Name DemoZ0S_GIT -, Overviev

Description Demo ZOS using Package GIT

Project Streams Build Enviro

Create Branch " Create
i “ O, overview <, Overviey
Project Type Package-based <, Build Pai
Locked MNo
Hidden MNo

VCR demozos

. [liecydes | beploy Emi
VCR Project Name

Create " Create
= -, Overview <, Overviey
Issue Tracking System -
. Deploy P

Build Script build.xml
Deploy Script deploy.xml

Security Settings (optional)
User Access ALM User

Admin Access ALM Administrator

@ Clone Project

The Project Type is Package-based. A Package allows moving one or more individual files selected manually from a VCR
stream, this is a common way of working on the mainframe.

You can see that the Git repository “demozos” is connected to this project.

As mentioned in the first part: together with the Project, a

Head Project Stream is created that points to the master

branch of the project in Git. Prefix ([EL) *
Status Stable -

« . . « . D ipti
If you go to “Project Streams > Overview*, then click the eseripion” HEAD for DEMOMVS

“Edit” icon g and then click the “Edit” button on the
“Project Stream Info” panel. Y
Locked (Yes @ MNo

Here you can see all the options defined such as “Prefix”, ESSITNE No

“Build Type”, “Accept Forced Build*, etc... Tag-Based No

Build Type Full Build
Highest Build Number 0
All of this is explained in the User Guide. Accept Forced Build No
Tag Template ${streamType}_%${prefix}_5{package *
Lifecycle BASE

h‘—.”i | Refres i | Cai 'iﬂi
n Demo - Kobee DevOps for z/OS

The Build Level

ABuild Level is the first level in the lifecycle and is responsible for building your code.

Under "Lifecycles > Overview" you will notice the BASE Lifecycle which is linked to the main Project Stream.

Click the "Edit" icon # next to this Lifecycle, you will see all the levels that are connected to this BASE lifecycle.

Click the "Edit" icon # on the "BUILDZOS" level, this is the Build Level. On the "Level Info" panel click the "Edit"

button.

Description

Name BUILDZOS

Type Build
Locked No
Debug (Yes @ No

Notification Type Mo notification

Notification Criteria Never

Requester User Group

Package Build Z0S

%

Most fields speak for themselves (let's ignore the Notification, Schedule and Requester fields for now).

Activating the Debug option makes it easier to track things in the beginning, especially when a Build fails. Once every-

thing runs smoothly, you can disable it.

Click the "Cancel" button.

When we create a level, the Phases linked to that Level are automatically created as well. Those Phases will be executed
when a Level Request is initiated.

You can see the Phases by selecting the “Edit Phases” link underneath the “Phases Overview” panel.

e
4+ /2
*+ 8 /7 72
+ 8 /2
+ & /72
* 7 &

Phases Overview

#® Retrieve Code 5.9.0
Build 5.9.0
Tag Code 5.9.0

#® Link File Revisions 5.9.0
Cleanup Work Copy 5.9.0

Yes
Yes
No
No

Cleanup Work Copy
Cleanup Work Copy
Cleanup Work Copy
Cleanup Work Copy

Demo - Kobee DevOps for z/OS

The Build Environment

A (Build) Level is a conceptual step in the Lifecycle. We still need a physical machine to execute our Build on, so we have
to link a Build Environment (the machine we will build on) to the Build Level.

Click "Build Environments > Overview", the click the "Edit" icon iy for the "ZOSBUILD" environment.

Build Environment Info

Name Z0OSBUILD Build Tool ANT1.10.10
Level BUILDZOS Source Location C:/ikan/ALM_environments/DemoZ05_GIT/buil
Machine ikanalm Target Location C:/ikan/ALM_environments/DemoZ0S_GIT/buil
History |2 view Parameters A d

@ Clone

Phases Overview

Transport Source 5.9.0 Cleanup Source
z/0S Copy from Source folder to Target folder 2.1.0 Yas Cleanup Source
z/0S Copy Sources to z/0S for compilation 2.1.0 Yas Cleanup Source
z/0S Maps and Programs compilation 2.1.0 No Compress Build
Compress Build 5.9.0 Yas Cleanup Source
Archive Result 5.9.0 Yas Cleanup Source
Cleanup Source 5.9.0 No Cleanup Result
Cleanup Result 5.9.0 No

£ _Edit Phases

Just as for the Level, the Phases linked to the Environment are created together with the Build Environment. They will
be executed when the Build of a Level Request will be executed on the Kobee Agent.

Kobee always starts by transferring the sources to the “Source location” and placing the result in the “Target Location”.

These locations are automatically cleaned up when the Level Request has finished, unless we have chosen to use the
debug function.

NOTE: The source and target locations can be chosen freely. In our example it is “C:/ikan/ALM_environments/DemoZ0S_GIT/
build/”.

NOTE: In order to distinguish Levels from Environments, we use uppercase for the level and lowercase for the environment
directories. Levels and Environments can have the same name.

If you click the “Edit” button in the “Build Environment Info” panel, you can see we have set “Downloadable Build”
option to “Yes”, so we are able to download the build result.

n Demo - Kobee DevOps for z/OS

The Build Environment and Phases parameters

Phases can -or sometimes must- be provided with additional information in the form of parameters. For example: a
Phase may need a location of a specific resource. This enables a high level of customization without the need to alter
the Phase’s inner mechanics. The Phase parameters make it possible to customize the build and deploy process with
minimum effort and without the need of programming skills.

Phase parameters can be set on various entities: Machines, Environments and Phases, following a cascading order.

For the z/OS solution we are working with Phase Models, Resources and Scripts that are tailored to the client’s main-
frame environment and integrated into Kobee by the z/OS Phases and Phase parameters.

Auditing the Project
When creating or making changes to a level, Kobee automatically blocks the level and requires the user to run a project

audit prior to using it. This project audit is a verification process performed by Kobee which checks the project setup
consistency.

On the overview, you will see most of the different objects we created.

The information screen for our Project displays the Build Archive of the Head Project Stream (where our future Builds will
be stored) and the Build Level containing one Build Environment on the Kobee Agent, where the build will be executed.

, Kobee Desktop Level Requests v+ Packages » Approvals « Q: v "_—E

DemoZ0S_GIT History Log Project Stream v Lifecycles ¥ Levels * Build Environments ¥ Deploy Environments v EITG LG

Project Administration > Audit Project 0

I
@ Actions [::‘ Project Streams
No actions available Project Stream Build Archive Location

C:/fikan/ALM_system/buildArchive/

H_Main HEAD for DEMOMVS s
I 1
E@ Environments
Cenvironment | Level | Locked | Machine [Taroet | Wessage|

C:fikan/ALM_environments/DemoZ0S_GIT/
build/target
C:fikan/ALM_environments/DemoZ0S_GIT/
proddeploy/target
C:fikan/ALM_environments/DemoZ05_GIT/
testdeploy/target

4 ZOSBUILD = BUILDZOS ikanalm
'@J ZOSPROD @& PRODZOS ikanalm

l:&ZOSTEST & TESTZOS ikanalm

Demo - Kobee DevOps for z/OS _

The Test (and Production) Level

A Test Level is the next level (in our lifecycle) after the Build Level and is responsible for delivering the build to the Test
department. Likewise a Production Level is the next level after the Test Level. Since Test Levels and Production Levels
are similar, apart from the notification options, this topic applies to both.

In the Project Administration section, edit the Project.

Go to “Levels > Overview”, click the “Edit” icon /7 for the “TESTZOS” level and then click the “Edit” button on the
“Level Info” panel.

Name TESTZOS e
Description Test ZOS

Type Test
Locked No

Debug O Yes @ No

Notification Type Mo notification v *

Notification Criteria Never v *
Requester User Group ALM User v
Pre-Notification User Group v
Post-Notification User Group v
Post-MNotification Criteria -

The Deploy Environment

Similar to Build Level, the Test Level (or Production Level) is just a conceptual step in the lifecycle. We need a physical
Machine to which we can deploy our Build result, so we need to link a Deploy Environment to the Level.

Go to “Deploy Environments > Overview”, click the “Edit” icon # for the “ZOSTEST” environment and then click the
“Edit” button on the “Deploy Environment Info” panel.

Edit Deploy Environment ®

Name ZOSTEST *

Level TESTZOS - ¥

Machine ikanalm v #

Build Environment ZOSBUILD v ®
Deploy Tool ANT1.10.10 v ®

Deploy Script
Source Location C:/ikan/ALM_environments/DemoZ05 *
Target Location C:/ikan/ALM_environments/DemoZ0S #*
Partial Deploy (Yes @ No
Debug Cyes @ Mo

User Controlled Parameters (Yes @ No

m Demo - Kobee DevOps for z/OS

This is almost similar to a Build Environment.

The deploy will be executed by the Kobee Agent on the selected Machine. We have “ZOSBUILD” selected as “Build
Environment” to indicate that we want to deploy the result of our Build Environment to our Deploy Environment.

The Build result previously created will be extracted in the “Source Location”.

You can view the Phases that will be executed during the deployment (Level Request) to this Deploy Environment in the
“Phases Overview” panel.

Creating the Deploy Parameters

What we did earlier for the Build parameters, should also be done for the deploy parameters on the Deploy Environment
and on the deployment Phases.

We have set these already according to our z/OS Demo project setup.

You can see them by going to “Deploy Environments > Deploy Parameters” for the environment and for the machine by
going to “Global Administration > Machines > Machine Parameters”.

Parameters Overview

I e e S |

g ZOSPROD Deploy ikanalm /S R g ftp.active true;false
/" % g propsfile.obitypes 4${dir.zosResources}/globalObjtypes.properties
/" % @ propsfile.environment ${dir.zosResources}/DEPLOY/Prod/environment_deploy...

/ % g undoDeployment false;true;deletion Undo Deployment
/" ® g dirzosResources C:/ikan/ALM_system/Z05/PhaseResources Z0S resource files
/" R g dirzosModels C:/ikan/ALM_system/Z0S/PhaseModels/DEPLOY Phase Models

* ZOSTEST Deploy ikanalm /S R g ftp.active true;false

/" % g propsfile.objtypes 4${dir.zosResources} /globalObjtypes.properties
/" ® g propsfile.environment ${dirzosResources}/DEPLOY/Test/environment_deploy...

/ % g undoDeployment false;true;deletion Undo Deployment
/% g dirzosResources C:/ikan/ALM_system/Z0S/PhaseResources Z0S resource files
/ R g dirzosModels C:/ikan/ALM_system/Z0S/PhaseModels/DEPLOY Phase Models

12 Parameters in 2 Environments found, displaying all
Search Criteria: Parameter Type - Deploy

Auditing the Project

Just as for the Build Level, we needed to audit the project first to unlock the Test and Prod Levels.

Demo - Kobee DevOps for z/OS _

The z/0OS solution Phases

Phases represent specific tasks or actions that must be performed on the Levels and Environments.

Kobee comes with a set of “Core” Phases, “Solution Phases” such as the z/OS Phases, but you can also create your own
“Custom Phases” which gives you endless possibilities.

The main advantage of using Phases is that they allow you to customize your project's workflow with reusable building
blocks. On top of that, they can be shared and distributed onto local and remote machines.

We will shortly cover the three major components: the Phases, the Resource files and the Model files that are used by
the z/0S solution on Kobee.

Phases

The z/0S Phases are used to run different z/OS tasks. Most of these Phases will generate JCL that will be submitted for
execution on the z/OS mainframe machine.

Models

For the previously mentioned JCL generation we use predefined JCL Models. See the sample below for a sample JCL
Model for a CICS pre-compile compilation.

//***

//** CICS-PRECOMPILE PROGRAM *k
//***
// SET CICSPGM='${cics.lang.program}'

// SET CICSOPT='${cics.lang.parms}'

//PCICS EXEC PGM=&CICSPGM,REGION=4M,COND=(4,LT),

// PARM='&CICSOPT',MAXRC=${cics.lang.rcmax}

//STEPLIB DD DSN=${cics.prefix}.${cics.lang.linklib},DISP=SHR
//SYSPRINT DD SYSOUT=x
//*YSPRINT DD DISP=(MOD,PASS),DSN=&&PCMPLIST,

//* UNIT=SYSDA,SPACE=(CYL,(10,10)),

//* DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)
//SYSPUNCH DD DSN=&&SYSCIN,DISP=(,PASS),

// UNIT=${env.zos.unit},DCB=BLKSIZE=400,
// SPACE=(400, (400,400))

//SYSIN DD DSN=&&&SRCOMPIL,DISP=(0OLD,PASS)

// SET SRCOMPIL=SYSCIN

m Demo - Kobee DevOps for z/OS

Resource files

The JCL Model files have parameters defined (e.g. ${cics.lang.program}) that are substituted by the values from the
Resource files. Below is a sample of a some properties in a CICS Build resource file.

cics.name=CICSTEST
cics.TOR.name=CICTTEST
cics.FOR.name=CICFTEST
cics.prefix=DFH320.CICS

When we combine these three components we get the following:

oo] [i oo

preCompileCics I

precompileCics_jcl /%% CICS-PRECOMPILE PROGRAM hid
T [COBOL2,LANGLVL(2), NODEBUG,NOSOURCE,SP,NOOPT |-+ /. SET C\CSPGM"$(cics,lang,program)‘

SDFHCOB Jf SET CICSOPT=[8{cics.lang.parmsy |

YRR DFHEC JIPCICS EXEC PGM=8CICSPGM,REGION=4M,COND=(4,LT),

/' PARM='&CICSOPT, MAXRCLS cics Jang.reman |

[linkiib | et AR J/STEPLIB. DD DSN=${cics.prefix)[${cics.lang linklib}|DISP=SHR
I ...

ﬁ_

/)
/%% CICS-PRECOMPILE PROGRAM **

I

Jt SET CICSPGM{DFHECP1$']

/f SET CICSOPT{'COBOL2, LANGLVL(2), NODEBUG,NOSOURCE,SP,NOOPT]|
JIPCICS EXEC PGM=&CICSPGM ,REGION=4M,COND=(4,LT),

/# PARM='&CICSOPT' [EFC653 SUBSTITUTION JCL - PGM=DFHECP1S, ..
//STEPLIB DD DSN=DFH320.CICS DISP=SHR

.

For this demo project setup we have already defined everything. In order to use the z/OS solution in your company’s
environment, you will need to adapt the model and resource files.

The z/0S configuration (including the resources and models configuration) is managed by the Kobee Resource
Configurator application, more about this in the "Kobee DevOps for z/OS mainframe" document which covers the entire
solution setup (https://www.kobee.io/documents/integrations/zos/kobee-devops-for-zos-mainframe.pdf).

More intormation

For more in-depth information, refer to the following documentation on: https://docs.kobee.io
e Kobee User Guide

e How to Guide - Using and Developing Custom Phases in Kobee

e Kobee Installation Guides

Demo - Kobee DevOps for z/OS

https://www.kobee.io/documents/integrations/kobee-devops-for-zos-mainframe.pdf
https://www.kobee.io/documents/integrations/zos/kobee-devops-for-zos-mainframe.pdf
https://docs.kobee.io

IKAN Development
Motstraat 30
2800 Mechelen, Belgium

Tel. +32 15
info@kobee.io
O e e www.kobee.io

© Copyright 2024 IKAN Development N.V.

The IKAN Development and Kobee logos and names and all other IKAN product or service names are trademarks of IKAN Development N.V. All other
trademarks are property of their respective owners. No part of this document may be reproduced or transmitted in any form or by any means,
electronically or mechanically, for any purpose, without the express written permission of IKAN Development N.V.

