
DevOps for z/OS mainframes
using Kobee

How to prepare your Kobee installation for z/OS

2 DevOps for z/OS - How to prepare your Kobee installation for z/OS

Table of contents
Key components...4

Other components..5

Setting up the z/OS solution..6

The z/OS solution Phases..6

Creating a project in Kobee...6

Adding Phase to the Project Environments...6

Models and Resources used by the z/OS solution Phases...7

How to get started..8

Verifying the JCL Models... 11

Configuring the Resources..12

1. General...12

2. Preprocessor..13

3. Compilation Configuration...15

4. Build Environment Configuration.. 17

5. Deploy Environment Configuration...18

Exporting the Configuration Set...18

Phase parameters in Kobee..18

Location parameters...19

Machine Parameters...19

Build Environment Parameters..20

Test and Production Environment Parameters...21

Build Phases Parameters..21

Test and Production Phases Parameters...23

Creating backups and performing imports in KRC...23

Creating and restoring Configuration Set backups ...23

Importing files and models... 24

Single Configuration File.. 24

Configuration File Archive.. 24

Model Archive.. 24

Appendix A...25

Object types: function types and properties...25

Function types...25

“luw” properties (definitions for Linux, Unix or Windows)...25

3DevOps for z/OS - How to prepare your Kobee installation for z/OS

“match” properties (Object Types to match for compilation).. 26

“options” properties (to activate actions for the environment Phases).......................... 26

“zos” properties (Definition of DSN properties for the z/OS Object Type)...................... 27

“useroptions” (Special options)... 27

Appendix B..28

Default Project properties...28

Changing templates and patterns..29

Special case properties...29

Appendix C..30

Practical example on how properties are used in the models..30

Compile model sample...30

Link-edit model sample..32

4 DevOps for z/OS - How to prepare your Kobee installation for z/OS

Summary
This document will show you how to set
up a Kobee installation for z/OS, what the
components are and how they work together.

Setting up this solution will require someone
proficient in Kobee administration.

The Kobee administrator will need the
cooperation from the z/OS team to match

the current z/OS environment with Kobee.
The following components should be available.

Key components

•	 Kobee
The DevOps application set up with a connection to
the Version Control Repository containing the z/OS
sources. More info:
https://docs.kobee.io/user-guide-en/6.0/GlobAdm_
VCR.html

•	 	Version Control Repository
A Git or Subversion repository containing the
z/OS source files.

•	 Kobee solution Phases for z/OS
(See: image tag 1)
Phases that are required to use Kobee for
z/OS compile (build) and promote (deploy) actions.
Phases are an integral part of the Kobee architec-
ture, they represent the actions that need to be
performed during a compile or promote request.

https://docs.kobee.io/user-guide-en/6.0/GlobAdm_VCR.html
https://docs.kobee.io/user-guide-en/6.0/GlobAdm_VCR.html

5DevOps for z/OS - How to prepare your Kobee installation for z/OS

This unique concept allows for rapid workflow
changes, dynamic behavior, fast traceability, and so
on… More info:
https://docs.kobee.io/how-to-use-and-develop-
phases-en/5.7/UseDevelopPhases.html

•	 	Kobee Resource Configurator
(See: image tags 2 & 3)
An application to edit and generate the required
models and resources used by the
z/OS solution Phases.

•	 	Phase Scripts
Although not strictly necessary, it is set up by
default. The folder contains scripts which are copies
of the scripts that come bundled with the Phases.
This allows script customization that will affect all
Phases at once, if needed. Phase scripts will not be
covered in this document.

Other components
Ant tools
The z/OS Phases make use of libraries which are not
part of the standard Ant distribution. To verify the pres-
ence of these files, in Kobee go to the top menu, click
the “Global Administration”. Next click “Overview” in
the “Scripting Tools” panel.

On the “Scripting Tools Overview” page, click the “Edit”
icon in from of the Ant tool. On the edit page check if the
“Lib Path” contains a system location value.

The location (on your file system) should contain the
following files:
•	 	ant-ikan-tools.jar
•	 	jxl-2.6.10.jar
•	 	ant-contrib-1.0b3.jar

When missing, look for these files in the Kobee distribu-
tion archive.

NOTE: Note that in this documentation the assump-
tion is that the Kobee Agent and the Kobee
Server are running on the same machine.
Optionally you can run the Agent on a different
machine or even run the agent on z/OS using
UNIX System Services (USS).

https://docs.kobee.io/how-to-use-and-develop-phases-en/5.7/UseDevelopPhases.html
https://docs.kobee.io/how-to-use-and-develop-phases-en/5.7/UseDevelopPhases.html

6 DevOps for z/OS - How to prepare your Kobee installation for z/OS

Setting up the z/OS solution
The z/OS solution Phases
First the z/OS solution Phases need to be imported (from the distribution archive) into Kobee. Since this documentation
only focusses on these specific Phases they will be referred to as “Phases” for the remainder of this document. Only a
few Phases are needed to make a minimal working z/OS DevOps solution, these are mandatory and always need to be
installed. In a real scenario however you would want to install other optional Phases to match your z/OS environment.

The required Phases are:

For a complete list of Phases including details, visit:

https://docs.kobee.io/integration-zos-phases-catalog/2.1/zOS_Phases_Intro.html

To see how you can import Phases in Kobee, visit:

https://docs.kobee.io/user-guide-en/6.0/GlobAdm_Phases.html#_globadm_phases_importing

Creating a project in Kobee

Once imported, a new project has to be created; this is done in the Global Administration section of Kobee.

For detailed information, visit:

https://docs.kobee.io/user-guide-en/6.0/GlobAdm_Project.html

Instead of creating a new project it is possible to import the "DemoZOS" project from the Kobee distribution archive,
follow the related steps in document (https://www.kobee.io/documents/integrations/zos/Windows_distribution_
Kobee_ZOS2.2.0.pdf) and then return to this document when finished and move to the next chapter.

It’s important to set the project type to “Package-based”. During the project creation process, Kobee automatically
sets up a Project Stream with a base Lifecycle for this new project. In this empty base lifecycle, levels (Build, Test, and
Production) and environments (Build and Deploy) need to be created manually. The project name cannot contain
empty spaces because it is also used by the solution for folders, Phases and properties.

We highly recommend reading the Project Administration chapter, starting at the Project Streams before moving on.
https://docs.kobee.io/user-guide-en/6.0/ProjAdm_ProjMgt_ProjectStream.html

Adding Phase to the Project Environments

The Phases need to be added to the appropriate (Build and Deploy) environments. Since Phases may be dependable on
other Phases it is important that they are arranged in the correct order.

Below is an example of what the order could look like, this example is based on the setup that IKAN uses to demo its
z/OS solution on Microsoft Azure.

For the compile actions:
•	 Copy from Source to Target
•	 Copy Sources to PDS for compilation
•	 Maps and Programs compilation

For the promote actions:
•	 Copy from Source to Target
•	 Promotion of components and load-modules

https://docs.kobee.io/integration-zos-phases-catalog/2.1/zOS_Phases_Intro.html
https://docs.kobee.io/user-guide-en/6.0/GlobAdm_Phases.html%23_globadm_phases_importing
https://docs.kobee.io/user-guide-en/6.0/GlobAdm_Project.html
https://www.kobee.io/documents/integrations/zos/Windows_distribution_Kobee_ZOS2.2.0.pdf
https://www.kobee.io/documents/integrations/zos/Windows_distribution_Kobee_ZOS2.2.0.pdf
https://docs.kobee.io/user-guide-en/6.0/ProjAdm_ProjMgt_ProjectStream.html

7DevOps for z/OS - How to prepare your Kobee installation for z/OS

In the Project Administration scope, go to: “Build (or Deploy) environments” > “Overview” > “Edit Phases”. On “Build
Environment Phases Overview”, click the “Insert Phase” link.

The Build Phases should chronologically be in between the following core Phases:
•	 Transport Source
•	 Compress Build

Also, the following core Phases must be deleted for the Build Environment:
•	 Verify Build Script
•	 Execute Script	
•	 Transport Deploy Script

The Deploy Phases should chronologically be in between the following core Phases:
•	 Decompress Build Result
•	 Cleanup Build Result

Also, the following core Phases must be deleted for the Deploy Environment:
•	 Verify Deploy Script
•	 Execute Script	

Models and Resources used by the z/OS solution Phases

Broadly speaking the main purpose of the Phases is to generate JCL code which is then transferred to the z/OS main-
frame where it will start the compile or promote process.

The compile or promote JCL code is generated based on the properties defined for your source code. These properties are either
set by Kobee (z/OS Phases) by analyzing your source code or picked up by Kobee in case the user provides a properties file for
each source. Through these properties Kobee (z/OS Phases) will define which JCL steps are needed for the specific source code.

For every JCL step that is needed, a JCL Model is retrieved from the JCL Models archive and then added to the to-be-gen-
erated JCL code.A JCL Model is basically a JCL card template with property placeholders. The placeholders are used to
customize the JCL card according to the type of source code and the z/OS environment it will run in.

Phases on a Build Environment Phases on a Deploy Environment

8 DevOps for z/OS - How to prepare your Kobee installation for z/OS

The properties needed for this customization are retrieved from the Resources archive (and from property files which
are generated per program source by Kobee). The entries in the Resources archive need to match your z/OS environment
of course.

The image below shows the process simplified.

Kobee for z/OS provides many JCL Models that can be adapted to your z/OS environment and it also possible to add
your own JCL Models.

While JCL models are recognizable by a “_jcl.model” suffix. There are also other models used by the Phases which
support different functions, again the suffix of these models reflects their functionality e.g., a sysin model will have
a “_sysin” suffix, an FTP model will have a “_ftp” suffix and so on...

How to get started
Kobee Resource Configurator (KRC), comes with a default Configuration Set. When there is an existing installation
of the Kobee for z/OS solution prior to the release of KRC, it is best to create a new Configuration Set as it will offer a
blank set to which the existing files can be imported into. Importing files will be addresses in the “Creating backups
and performing imports in KRC” chapter.

In other cases it is a good practice to copy this default Configuration Set to a new set. The original set can then be
used for future references when needed. Using a copy is a quicker way to become operational as it will only require
customization rather that starting from scratch.

9DevOps for z/OS - How to prepare your Kobee installation for z/OS

List the JCL’s you are currently using for compilation and promotion. Once this list is available check for matching JCL
Models in Kobee Resource Configurator. Then make the necessary modifications to make sure that Kobee for z/OS will
act similar to your current JCL’s and aligns with your standards.

Models adhere a naming convention: “stepnameWHAT_jcl.model”. For example, a pre-compile step for COBOL would
translate to: “precompileCOBOL_jcl.model”

As mentioned before in case you can’t find a specific model, a new model should be created for the missing JCL step. A
good practice is to find a similar model and to look for the required JCL properties, which are needed by the Resource
configuration.

You could start with a compile JCL. For the implementation, you will need all steps (remember there is a JCL model for
each step) and the SYSINs; the job card and job output can be omitted as they are generated automatically. JCL steps
you would need to identify are: compile, endJcl, expand, copyLct, debugger, linkEdit, listing, preCompile, preCompi-
leCics, preCompileDb, etc.

When creating a new model, its name should preferably correspond to the type of step, for example if it’s a compile
model then the name should start with ‘compile’. It is a good practice and it will make linking a model to a step much
more obvious later on when you start configuring the solution.

For each JCL step, identify the exec card parameters like: program used for compilation, the DD statements for the file/
member datasets and the parameters like: PARM, RC... parameters such as STEPLIB, SYSIN… and SYSLIB content used
for compiles and binds.

Determine which SYSLIB entries are needed. Generally there should be an entry with a default temporary and empty file
definition (DSN) of the SYSLIB card, followed by one or a combination of the built-in SYSLIB generation model parame-
ters below. For an example you can take a look at the compile models for Cobol or Assembler.

These are the available parameters you can use:

•	 "${copylibs}"
Generates the SYSLIB code for the library that contains the copybooks that are required by the model.

•	 "${linklibs}"
Generates the SYSLIB code for the system library that contains the executable modules for z/OS components
and utilities that are required by the model. Sometimes you may encounter a "${incllibs}" entry in the models,
this is an older parameter that is now equal to the "${linklibs}" parameter.

The SYSLIB code generated by the model parameters above can be extended when extra features are needed.

•	 "${extendedCopylibs}" (derived from: "extendedCopylibs_jcl.model")
Generates the SYSLIB code for extra program features (CICS, DB2,...) that are required by the model and which
needs to be added after the code generated by ${copylibs}.

•	 "${extendedLinklibs}" (derived from: "extendedLinklibs_jcl.model")
Generates the SYSLIB code for extra system features (CICS, DB2,...) that are required by the model and which
needs to be added after the code generated by ${linklibs}.

10 DevOps for z/OS - How to prepare your Kobee installation for z/OS

Code generated by both the basic and extended SYSLIB parameters relies on information configured in the "envi-
ronment_build_zos.properties" file. The two extended SYSLIB model parameters additionally retrieve data from the
specific feature Build model files (e.g. the CICS feature will use the "environment_build_cics" properties file).

Example of generated SYSLIB entries (in the compile Cobol model):

//SYSLIB DD DISP=(,PASS),DSN=&&SYSLIBCP,

// UNIT=SYSALLDA,SPACE=(TRK,(1,1,1),RLSE),

// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=27920)

// DD DISP=SHR,DSN=IKANALM.DEMOS.P0000046.COPYLIB

// DD DISP=SHR,DSN=IKANALM.DEMOS.TEST.COPYLIB

// DD DISP=SHR,DSN=IKANALM.DEMOS.P0000046.COPYLIB

// DD DISP=SHR,DSN=IKANALM.DEMOS.TEST.COPYLIB

// DD DISP=SHR,DSN=IKANALM.DEMOS.P0000046.DCLGEN

// DD DISP=SHR,DSN=IKANALM.DEMOS.TEST.DCLGEN

//* DD DISP=SHR,DSN=SYS1.COB2LIB

//* DD DISP=SHR,DSN=DFH320.CICS.*

//** DD DISP=SHR,DSN=DSN810.DCLGEN

//* DD DISP=SHR,DSN=CAI.DATACOM.COPY

//** DD DISP=SHR,DSN=IKANALM.DEMOS.PROD.MACRO

//* DD DISP=SHR,DSN=IKANALM.DEMOS.PROD.COPYCOB

//** DD DISP=SHR,DSN=IKANALM.DEMOS.PROD.COPYPLI

// DD DISP=SHR,DSN=SYSV.CPW.ECC300.MLCX870.COPYLIB

During the compilation phase, all parameters in a model will be replaced by generated values based on the program/
map source parameters, object types, environments and language.

You don’t need the job card, print listings of the Pre-compile, Compile and Bind.

Other information you should investigate:

•	 Languages to compile
Kobee for z/OS supports a number of languages like ASM, COBOL, PL/1... by default.
Check if the language you want to compile is available or if an available language needs changes.

•	 Compile and Bind steps
The same principles (see above) apply.

•	 Extra tools or features
Check if other tools are required like a debugger for example.

•	 Specific files
It might be possible that next to the compile result (load and listing) you also need other files for deployment on z/
OS. In this case you need to make sure that they are part of the build result. Note: this build result is stored in the
Build archive location on the Kobee Server.

Generated by ${copylibs} parameter

Generated by ${extendedCopylibs} parameter

Content from model
(optional with inline parameters)

11DevOps for z/OS - How to prepare your Kobee installation for z/OS

Verifying the JCL Models

The Resources and Models are managed by the Kobee Resource Configurator. Open the Kobee Resource Configurator
(KRC) and log in.

Select your Configuration Set and then click on “Models” in the top menu, this will display the available JCL Models. Pick
a random model to view its contents, for example: “compileAsm_jcl.model”.

Using the top panel “Model Info” actions it’s possible to copy, download, or upload the selected model. Note that it is
not possible to edit the JCL Model contents using KRC, you will need to download and upload the model file to do so.
The edit action in the “Model Info” panel can be used to change the model's name and to set the export path (within the
export folder hierarchy) which is by default: “BUILD”.

In the model content you will see the property placeholders mentioned earlier, for example: “${pgm.language}”, these
may not be changed or removed.

Entries starting with “RCMAX=” or "WARNING=" are used by Kobee internally, they should be left as is.

Go through all the JCL Models in the list to verify if they are compliant to your setup.
There are models available for the Build (Compile) and Deploy (Promote) steps, the distinction between the two is
noticeable in the export path. We recommend using this convention when creating new models. Please be aware when
changing or creating a JCL model that step names used in the JCL code are limited to 8 characters.

There are additional subfolders for specific cases:
All models related to communication with the mainframe (FTP) are grouped in the “ftp”, “mfdas”, “zosmf” and “uss”
folders.

12 DevOps for z/OS - How to prepare your Kobee installation for z/OS

Models used by the Phases for double compilation scenarios are located in the “double” folder.
See the appendix for a practical example on how properties are used in the models.

Configuring the Resources

As explained earlier Kobee Resource Configurator (KRC), comes with a default configuration set. It is a good practice
to copy this default configuration to a new set and to customize this new set for your environment. The original set can
then be used for future references when needed.

Configuring the Resources is a necessity; Kobee for z/OS will not work in your environment using the default configuration.

Click on “Configuration Sets” and select the “Base Configuration”. Click the “Copy” link below the top menu and choose
a name for the new set. When finished, KRC will display your new set in the breadcrumb; always make sure that you’re
making changes to the right set.

It’s important to mention that when on a page, the toggle switches on the right side of the values should be verified
since they represent the status of a value (active/inactive). if you want to use an inactive item you need to make sure
that the toggle switch is set to active mode before saving the property, otherwise the parameter will not be exported to
the property file nor will the parameter value you have entered be saved.

The Resources page is divided into five categories, and each of the categories contains default types with their entries
as provided with the default Configuration Set.

1. General

•	 z/OS FTP Parameters
›› parmsFTPZOS.properties

Compile and Promote JCL is sent to the z/OS mainframe using an FTP connection. During this process the JCL gets
executed and components are sent and received. This property file represents the connection details for one z/
OS LPAR. For multiple LPAR's additional property files will need to be created or the user and LPAR IP should be
configured as an environment parameter.

•	 OS Family
›› osfamily.properties

Details per host operating system (of the Kobee Agent) used for the generation of the FTP connection script (shell/
console). For example, the file extension.

•	 Environment
›› environment_build.properties

Properties to configure the z/OS build environment and its active features (CICS, DB2...). To set the properties
of a specific feature instead, you have to use the 'environment_build_feature.properties' (e.g., 'environment_
build_cics.properties') in the Build Environment panel.

To use a specific feature it needs to be activated by setting the value to ‘True’, for example by setting the option
‘True‘ for the ‘Cics Active’ feature in case you need it.

When a feature is enabled the corresponding properties file (“environment_build_[featurename].properties”)
will be loaded. This file can be found in the "Build Environment" category.

13DevOps for z/OS - How to prepare your Kobee installation for z/OS

The compilerTypes property will list the available values for the compilers on the z/OS build environment. If the
generated (using the defaultPgms compilerType) or imported property file for a source program has a different
compilerType then the compile process will not work.

›› environment_deploy.properties
Properties to configure the z/OS deploy environment and its active features (CICS, DB2...). To set the properties
of a specific feature instead, you have to use the 'environment_deploy_feature.properties' (e.g., 'environment_
deploy_cics.properties') in the Deploy Environment panel.

When a feature is enabled the corresponding properties file (“environment_deploy_[featurename].properties”)
will be loaded. This file can be found in the "Deploy Environment" category.

•	 Default Project
›› defaultProject.properties

Properties for extending JCL properties (Project/Package/Release/Version), setting z/OS properties and chang-
ing default language properties.

These global properties are always available for the Phases, models and external Phase scripts. Many of these
properties are derived from built-in properties in Kobee, unless they are changed in this Default Project proper-
ties file.

For a full list, see the appendix.

Although they are used internally the properties can also be used in script, models, etc. if needed, by using their
export name. The export name can be found by clicking the “Show Descriptions” link button and searching for
the name below the input field. The name however can only be used when surrounded by round braces and a
dollar sign (e.g., projectVersion should become: ${projectVersion}).

2. Preprocessor

•	 DefaultPgms
›› defaultPgms.properties

The default z/OS program properties (logical language, object type, etc...) and features that will be used if the
automatic detection fails during code analysis (by using the ‘sourceRules’ rules for detection) and if there is no
property file found in the source code package (in Kobee). When using property files be aware that they should
have a matching file name (e.g. "cobolfile.cblbatch" and "cobolfile.properties").

Note that for complex cases the detection process can be customized in the "getZosProgramProperties.xml"
script. The automatic detection process or using property files are preferred rather than using DefaultPgms.

The defaultPgms property file contains “pgms.compilation”, “pgms.linkedit” and “pgms.execution” properties
to determine if the component to build will have a ‘compilation’ step, a ‘linkedit’ step and for the JCL an ‘execu-
tion’ process. If a source code package has a properties file, the properties will have a "pgm.xxx" prefix instead.

The Object Type must relate to an existing Object Type in the Global Object Types properties file. The relation
happens through the (luw=suffix) property.

Then the “pgm.compilerType” sets the compiler type but first verifies if this type is defined in the "environment_
build.properties" file. By default, the "environment_deploy.properties" file does not have a compiler type.

14 DevOps for z/OS - How to prepare your Kobee installation for z/OS

•	 ObjectTypes
›› globalObjtypes.properties

The Global Object Types file is used as a library by the z/OS solution Phases in which entries are defined by func-
tion type (SRC: “Source program”, JCL: “JCL’s”, LIST: “Listings”...) and are associated with a unique file suffix (or
extension) each. Optionally Object Types can be matched to other Object Types, for example a Source program
can be matched with a Load-module and a DB2 DBRM, etc.

This file contains more than one possible definition identifying a type of source or component to manage. We
advise to delete logical object types that are not not needed. You can have different object types files if neces-
sary.

In case of a double compilation the Object Type must match with two Load and two List objects.Read the
Appendix for a full description of all the function types and properties.

The Phases (actually the first Phase that runs) will select the current Object Type from this file once the logical
language has been found after the source file analysis. Because the selection process will use the suffix value
from the "OBJECT.luw" entry as the identifier, this value needs to be unique in the Global Object Types library.
The only scenario where the same suffix could be tied to multiple object types is when a "Source Language
Options" (SRC_LANG) child type is used to extend a "Source programs" (SRC) object type, for example when a
single PDS has multiple source languages.

In the last case a main Object Type with the SRC function is thus completed with a child Object Type containing
a logical language name (defined in ‘languageZOS.properties’) in its property name, for example: ‘SRB_
ASSEMBLE’. Batch and CICS sources can have a separated targeted PDS for their load-modules, in this case the
Object types must be managed separately like SRB and SRC object types.

›› idmsObjtypes.properties
Defines the Object Types (in the same manner as ‘globalObjtypes.properties’) but for IDMS specifically.

	 Adding custom properties for a Global Object type
It’s possible to add custom properties to a property type of an object type by going to the bottom of the page
and clicking “Add a Custom Property”.

“Name” should have the following syntax “propertytype.propertyname”, where “propertytype” refers to the
group to which the property belongs to. For example if we want to add a custom property to the “luw” property
type, the name would look like “luw.propertyname”.

To use this custom property, in a model or elsewhere, we will need to add the object type explicitly to the place-
holder, prepended with the string “objtype.”. For instance, if the object type is Cobol the placeholder will have to
look like: ${objtype.COBOL.luw.propertyname}

•	 Source Rules
›› sourceRules.properties

Ant (regex) rules for analyzing the Sources to determine a logical language and its type (program or map) and
other options. When the rule is found, the logical language is set as property ‘pgm.language=LANGUAGE’ to be
used by the Phases, except if there is a predefined properties file included in the source package. We advise to
have same logical languages into this file and the "languagesZOS.properties" file.

15DevOps for z/OS - How to prepare your Kobee installation for z/OS

It’s possible to add rules to the sourceRules when a logical language is not supported or when the default rules
are insufficient.

A logical language is identified using four grouped subproperties:

[property].copybook
- For identifying copybook lines in the source file. This is optional.

[property].lang:
- Language name (must relate to a logical language in the languagesZOS property file)

[key].pattern
- Java regex rules for searching inside the source file. A rule can be ignored by using something like .* -̈̈ -̈ -̈ -̈ .*. 	
 Then the script must resolve the logical language.

[key].type
- Type of source (program, map, dds(as400)).

If all else fails it is possible to make code changes to the “getZosProgramProperties.xml” Ant script directly. This
file can be found in the phase scripts folder (by default named: ‘phaseScripts’).

Note that when adding new rules there also must be a corresponding Object Type (in ‘globalObjtypes.proper-
ties’) and a Logical language entry (in: ‘languagesZOS.properties’).

•	 DB2 Bind Rules
›› db2Rules.properties

Properties and rules for managing Bind information from the program source.

•	 J-MAN Rules
›› jmanRules.properties

Properties and rules for managing Jman models information from the Jman source.

3. Compilation Configuration

•	 Languages
›› languagesZOS.properties

Definitions of the JCL steps that are available per logical languages. The Phases use these steps, depending on
the required features after the source program analysis, to chronologically build the compile/promote JCL.

It is not possible to add a new step type to a language in KRC, the available steps types should be sufficient.
However, if this is really necessary you will need to contact IKAN support.

There is no step required for the Job Card; it is added automatically.

Each step is configured using properties. Some of these properties are mandatory, see the table.

16 DevOps for z/OS - How to prepare your Kobee installation for z/OS

Property Description

JCL Step Key word that defines the JCL step behavior*

Step Sequence The order of this step in the JCL sequence*

JCL Model File JCL Model(s) to use for building the JCL step*

Main Program Step z/OS program to run on the mainframe during the JCL step

Parameters Options

JCL Step:
Supported steps types are:
copySource, expand, compile, preCompile, preCompileCics, preCompileDb, debugger, linkEdit, listing, copyLct,
endJcl or null.

The null value is useful for managing step properties without adding a model to the generated JCL.

Step Sequence:
Reserved sequence numbers are: 10 for the “copy” step and 15 for the “expandSource” step.

Except when there is a “service” step with sequence number 25, then the “copy” step sequence number has to
be 26, or a “datacom” step with sequence number 20, then the “expandSource” step sequence number has to be
21.

In case of multiple models, the numseq parameter is incremented automatically by 1 for each model.

By default when sequence numbers are implemented they are set to increment by 5 for each additional step, this
allows room for 4 models in a single step, which should be sufficient.

If a double compilation (batch and transactional or double CICS) is necessary, the numseq parameter can have
2 numbers (for example: 50,80). However, in order to use the double compilation feature the option needs to be
enabled (set to “true”) in the defaultPgms or predefined (with the source) properties file.

JCL Model File:
The beginning of a model's name (e.g., ‘compileCobol_jcl.model’) will most likely correspond to the type of step
(using the example above:‘compile’). This is by default in the base configuration set.

By default there are specific models for each logical language, especially in case of the pre-compile, compile,
bind and debug steps.

Multiple models are allowed per step.

In case a double compilation the compilation phase will use an additional model, located in the “double” sub-
folder. For example when a “compileCobol_jcl” model has been defined, an additional “compileCobol_jcl_2” will
be added automatically.

17DevOps for z/OS - How to prepare your Kobee installation for z/OS

Optional properties:
The rcmax parameter may be optional yet it is crucial as it is used to set and later compare the return code for
the COND parameter (whether the step should be skipped based on the previous step) in the generated JCL.

It is used by Kobee for generating a list of return codes per step that is used in comparison with the return code
values in the JES logs coming from the mainframe. It is set using a "MAXRC=..." string in the EXEC card, the same
applies to the warning parameter: "WARNING=...".

Properties can be used in the models through the use of placeholders. For example the placeholder “${compi-
lation.lang.program}” in a model refers to the “program” property in the “compilation” step of a language. The
“lang” part in the placeholder must be left as is, it is internally set equal to the detected source language.

For a description of the other optional properties use the “Show Descriptions” option in any language configura-
tion page.

Adding custom properties
It’s possible to add custom properties to a language step by going to the bottom of the page and clicking “Add a
Custom Property”.

“Name” should be have the following syntax “groupname.propertyname”, where “groupname” refers to the
group to which the property belongs to. For example if we want to add a custom property to the compilation
step group, the name would look like “compilation.propertyname”.

Adding a new logical language
It is possible to create a new logical language but for the system to detect this new language and its properties
it is also necessary to create new rules. To create new rules a new Source Rules configuration object has to be
created. If this seems to be inadequate it is also possible to write a custom solution in the “getZosProgramProp-
erties.xml” file which is located in the phase scripts folder.

›› languagesZOSJOB.properties
Definitions of the JCL steps that are available for a JCL source logical language. Apart from this, the same principle
as with the 'languagesZOS.properties' also applies to this property file.

4. Build Environment Configuration

•	 [FEATURE]
›› environment_build_[featurename].properties

To set the properties of a specific feature (abendaid, for example) on the z/OS build environment. Note that the
feature also needs to be activated in the 'environment_build.properties' file, however for mandatory z/OS features
this is not necessary.

•	 z/OS
›› environment_build_zos.properties

Management of dataset info, for example to specify your PDS(E) naming conventions, z/OS route id and volume,
Load-modules transfer prefix, path levels used for SYSLIB copybooks, etc.

18 DevOps for z/OS - How to prepare your Kobee installation for z/OS

When JCL is generated any DSN specified here is automatically appended with the Last Level Qualifier (LLQ) of
the corresponding object type and the suffix defined in the 'globalObjtypes.properties'. In the case of USS (Unix
System Services) the path and suffix properties are used.

5. Deploy Environment Configuration

•	 [FEATURE]
›› environment_deploy_[featurename].properties

To set the properties of a specific feature (abendaid, for example) on the z/OS deploy environment. Note that the
feature also needs to be activated in the 'environment_deploy.properties' file, however for mandatory z/OS fea-
tures this is not necessary.

•	 z/OS
›› environment_deploy_zos.properties

The same principle as with the 'environment_build_zos.properties' also applies to this property file.

Exporting the Configuration Set

Once the Resources are configured and all Models are verified, the configuration set must be exported to a location on
the Kobee Agent. It is a good practice to use a common folder for all Kobee (z/OS) related files.

In Kobee Resource Configurator (KRC), click on “ Export” in the top menu, this will display the defined export locations.
Click the “Export this Configuration Set” button, choose the desired location and click the “Export” button.

As you may have noticed you can choose to deselect the configuration files and the models if needed. The exported files
will be divided into two folders, you can change the folder names if desired by clicking “Edit” in the breadcrumb on the
“Configuration Sets” page of the configuration set.

When finished successfully you will need to configure Kobee to use this configuration set, this has to be done by adding
parameters on various layers (global, environment and Phase layers) in Kobee.

Phase parameters in Kobee

Kobee Phases are predefined, parameter-driven, reusable building blocks. The ability to use parameters to control the
behavior of a Phase is a powerful feature.

Parameters can be defined on a machine, on an environment and on a Phase. When defined at the machine layer the
parameter will be used everywhere, except when it is overwritten by an environment, and the environment parame-
ter will be used except when it is overwritten by a Phase.

For a full explanation see:
https://docs.kobee.io/how-to-phase-parameters/1.0/PhaseParameters.html

For the z/OS solution, parameters will need to be set on all layers.

https://docs.kobee.io/how-to-phase-parameters/1.0/PhaseParameters.html

19DevOps for z/OS - How to prepare your Kobee installation for z/OS

Location parameters

Locations or z/OS property files can be set when on all levels but normally they will be set globally (machine or envi-
ronment). Below is a list of common location that can be set, some of them will return in the practical implementation
examples in the next paragraphs. The "propsfile.xxx" and "pty.xxx" files are set by default using the "dir.zosRe-
sources" location in their path.

Property Description

ikanalm.home Kobee Server or Agent

dir.zosModels Models (this location is mandatory)

dir.zosResources Resources (this location is mandatory)

dir.phaseScripts Phase Scripts

propsfile.parmsFTP FTP connection file (parmsFTPZOS.properties) (*1)

propsfile.objtypes Global Object Types file (globalObjtypes.properties)

propsfile.rules Source Rules file (sourceRules.properties)

propsfile.defaultPgm Source property file (defaultPgms.properties)

propsfile.db2Rules DB2 rules file (db2Rules.properties) (= optional)

propsfile.jmanRules JMAN rules file (jmanRules.properties) (= optional)

pty.defaultProject Default Project property file (defaultProject.properties)

propsfile.languages Languages property file (languagesZOS.properties) (for the Build level)

(*1): When using multiple LPAR's for different environments it's best to create multiple FTP parameter files and set them on the corresponding

envinronments in Kobee.

Machine Parameters
In the top menu, click the “Global Administration”. Next click “Overview” in the “Machines”, then panel, then click
on the “View Parameters” icon for the agent (or server/agent if combined) machine. In the “Machine Parameters
Overview” table click the “Create Parameter” icon to add the following parameters:

Key Value Mandatory Editable Dynamic Description

ikanalm.home C:/kobee Y *1

dir.phaseScripts C:/ikan/ALM_system/PhaseScripts Y *2

(*1): Sets the home directory of the Kobee installation folder. This is used by Ant.

(*2) : Use external instead of the internal Phase scripts. This allows the modification of the “getZosProgramProperties.xml" file when the Source

Rules are inadequate to define the logical language.

20 DevOps for z/OS - How to prepare your Kobee installation for z/OS

Build Environment Parameters
Assuming that the z/OS project is already set up, go to the project using the top menu “Project Administration”, and
click the “Edit” icon. On the “Project Info” page, click on “Build Environments > Build Parameters”. Add the following
parameters:

Key Value M E D ?

subjcl.parallel 1 Y *1

project.zos.package.template P???? Y

stopOnErrorCompile true;false Y Y *2

dir.zosModels C:/ikan/ALM_system/ZOS/PhaseModels/BUILD Y *3

dir.zosResources C:/ikan/ALM_system/ZOS/PhaseResources Y *4

includedFiles **/*.* Y

script.getZosProgramProperties ${dir.phaseScripts}/getZosProgramProperties.xml Y *5

dir.jeslogs C:/ikan/ALM_system/jeslogs/${alm.project.name}/${alm.levelRequest.levelName} Y *6

ftp.zosconvcmd quote SITE SBD=(IBM-1047,ISO8859-1) Y *7

usePreviousArchive false;true Y

propsfile.environment ${dir.zosResources}/BUILD/environment_build.properties Y *8

propsfile.objtypes ${dir.zosResources}/globalObjtypes.properties Y *9

propsfile.languages ${dir.zosResources}/BUILD/languagesZOS.properties Y *10

ftp.active true;false Y Y *11

save.jeslogs TRUE Y *12

(*1): Number of compiles that can run in parallel

(*2): Option to stop the compilation phase when a compile error occurs

(*3): Phase Models location

(*4): Resource files location

(*5): getZosProgramProperties.xml location

(*6): JES logs location. The values of the “dir.jeslogs”: ”${alm.project.name}” and “${alm.levelRequest.levelName}” are parameters available in 	

Kobee. For a full list of parameters see: https://docs.kobee.io/user-guide-en/6.0/App_PredefLevelParams.html

(*7): FTP subcommand (zOS encoding, transfer encoding) for mainframe

(*8): Environment build properties location

(*9): Global Object Types location

(*10): languagesZOS properties file location

(*11): Option to disable the FTP transfer of JCL (useful for troubleshooting)

(*12): Save the JES logs

https://docs.kobee.io/user-guide-en/6.0/App_PredefLevelParams.html

21DevOps for z/OS - How to prepare your Kobee installation for z/OS

Test and Production Environment Parameters
The same way of working as with the Build Environment Parameters applies to these parameters.

Key Value M E D ?

project.zos.package.template P???? Y

dir.zosModels C:/ikan/ALM_system/ZOS/PhaseModels/DEPLOY Y *1

dir.zosResources C:/ikan/ALM_system/ZOS/PhaseResources Y *2

dir.jeslogs C:/ikan/ALM_system/jeslogs/${alm.project.name}/${alm.levelRequest.levelName} Y *3

ftp.zosconvcmd quote SITE SBD=(IBM-1047,ISO8859-1) Y *4

propsfile.environment ${dir.zosResources}/DEPLOY/environment_deploy.properties Y *5

propsfile.objtypes ${dir.zosResources}/globalObjtypes.properties Y *6

ftp.active true;false Y Y *7

undoDeployment false;true;deletion Y

(*1): Phase Models location

(*2: Resource files location

(*3): JES logs location

(*4): FTP subcommand (zOS encoding, transfer encoding) for mainframe

(*5): Environment deploy properties location

(*6): Global Object Types location

(*7): Option to disable the FTP transfer of JCL (useful for troubleshooting)

Build Phases Parameters
In the Build Environment, click on “Edit Phases”, then click on the “Edit Environment Phase Parameter” icon next to
the Phases mentioned below.

•	 z/OS Copy from Source folder to Target folder
Copy components from a Source Environment folder to a Target Environment folder with predefined filters and
include/exclude masks using Object Types defined in globalObjtypes property file.

Name Value Mandatory Description

setDeleteComponents TRUE *1

setListsComponents TRUE *2

setObjectsComponents TRUE *3

setPropertyFiles TRUE *4

setSourcesComponents TRUE *5

NOTE: Read the “Project Administration” chapter of the User Guide on docs.kobee.io for help on setting up a project.

22 DevOps for z/OS - How to prepare your Kobee installation for z/OS

(*1): Copy all "sources to be deleted" components to the target.

(*2): Copy Listings object types to the target.

(*3): Copy all Objects object types (i.e. setObjectsZos, setObjectsIdms) to the target.

(*4): Copy Property Files (“*.properties”) to the target.

(*5): Copy all Sources object types (i.e. setSourcesZos, setSourcesIdms) to the target.

•	 z/OS Copy Sources to z/OS for compilation (Phase)
Select and to copy Copybooks, Includes, Dclgen, Lct, Macro, Map and Program files to their respective z/OS PDS or
USS path.

Name Value Mandatory Description

recvend.model recvend-xmit_jcl.model *1

(*1): The end JCL model to use after the receive command.

When partitioned data sets are of a different type (PDS vs PDSE) on the build and deploy environments we need to use an intermediate (XMIT)

PDS (available in the deploy environment). The Phase will determine the nature (PDS or PDSE) of the partitioned data set it will copy to.

By setting the "xmit Last Level Qualifier" in the "z/OS properties" section for object types with function "LOAD" or "XMIT" in KRC, the Phases

are able to identify an intermediate PDS (available in the deploy environment) like the build type. This parameter is not needed if this work-

around is not required in your environment.

(note): You can optionally add the ‘save.jeslogs’ parameter with value ‘true’ to a (compilation) Phase, for debugging purposes. The directory

for the JES log files is configured as a Build Environment parameter. We advise you to set your Tomcat listings option to true so that the JES

logs are visible in your Web browser.

•	 z/OS Maps and Programs compilation (Phase)
Compiles z/OS Maps in BMS or Sdf2 languages and Programs in mainly Assemble, Cobol, Pli languages with
pre-compile of Cics, Databases as Db2, Datacom, IDMS or IMS.

Name Value Mandatory Description

propsfile.languages Set the location of the “languagesZOS.properties” file* *1

save.jeslogs Always save JES logs

(*1): The languages properties file can be set at the build environment level instead.

23DevOps for z/OS - How to prepare your Kobee installation for z/OS

Test and Production Phases Parameters
In the Deploy Environment, click on “Edit Phases”, then click on the “Edit Environment Phase Parameter” icon next to
the Phases mentioned below.

•	 z/OS Promote components and load-modules

Name Value Mandatory Description

recvend.model recvend-xmit_jcl.model *1

(*1): When this is used on the "z/OS Copy Sources to z/OS for compilation" Phase, it will have to be enabled here too.

•	 z/OS DB2 Binds transfer and activation

Name Value Mandatory Description

propsfile.db2Rules ${dir.zosResources}/db2Rules.properties *1

(*1): To use the DB2 Bind Rules properties.

For a complete list of Phase parameters, visit:
https://docs.kobee.io/integration-zos-phases-catalog/2.1/zOS_Phases_Intro.html

Creating backups and performing imports in KRC
Creating and restoring Configuration Set backups

In the top menu click on “Backups”, next click the “Create New Backup”. A backup contains all the Configuration Sets,
but it does not contain any of the actual files you would normally get from an Export action.

To restore the Configuration Sets, on the “Backups” page click the desired backup file and then click the “Restore”
button.

When backups are no longer needed, they can be removed by clicking the red icon at the right side of the file name. KRC
will also remove the file from disk.

https://docs.kobee.io/integration-zos-phases-catalog/2.1/zOS_Phases_Intro.html

24 DevOps for z/OS - How to prepare your Kobee installation for z/OS

Importing files and models

In the top menu click on “Import”, an import action will always target the currently selected Configuration Set, so make
sure the correct one is selected by looking at the name in the breadcrumb. There are three ways to import files:

Single Configuration File
Mostly it is faster to import an existing configuration file instead of copying all the original values into a newly created
one.

In the popup dialog choose the desired file and make sure to select the correct configuration class as this will determine
the import action behavior in KRC. If the file is for a Build or Deploy Environment configuration (the configuration class
name will start with “build” or “deploy”) also enter the correct export path (by default this is “BUILD” or “DEPLOY”).

Configuration File Archive
When there are configuration files available, for example from an existing installation, it is possible to import these files
as an archive (.zip). Using this type of import will work best in a newly created Configuration Set because there will be
no conflicting file names.

It is necessary to add a file list in the form of an XML file to this archive.

In the “dist” folder of KRC there is a “krc_conffiles.zip” archive that is used by KRC for initializing the default
Configuration Set, this can also be used as an example on how to write the XML file.

Model Archive
The same information applies as with the “Configuration File Archive” import action.
Again in the “dist” folder there is a “krc_models.zip” archive that can be used as an aid for writing the XML file.

25DevOps for z/OS - How to prepare your Kobee installation for z/OS

Appendix A
Object types: function types and properties
Function types
Only one function type can be assigned to an Object Type.

Function Type Description

NONE No function (technical)

MAP Source Maps

SRC Source programs

SRC_LANG Source Language options

COPY Copybooks

JCL JCL’s

PROC JCL Procs

LIST Listings

BIND Bind files

LCT Link control Table

GENERATE Generated Files

LOAD Load-modules

DDL DDL

SQL SQL

IDMS IDMS ADS Sources

DATAFILE DSN or data files

FILE Other files

XMIT XMIT files to receive

JOB Jobs to submit as models

“luw” properties (definitions for Linux, Unix or Windows)

Property in KRC Exported Property Description

Luw Acronym acronym Acronym (3 to 4 characters)

Path (in VCR) path Path for the object (in the VCR)

File Extension suffix Associated suffix/extension file (lowercase)

FTP Format format ASCII or Binary FTP transfer

FTP Encoding encoding FTP data encoding (e.g., ISO8859-1)

26 DevOps for z/OS - How to prepare your Kobee installation for z/OS

“match” properties (Object Types to match for compilation)

Property in KRC Exported Property Description

COPY Object Type(s) copyref (*1)

LOAD Object Type(s) loadref (*2)

LIST Object Type(s) listref (*3)

DBRM Object Type(s) dbrmref (*4)

GENENERATE Object Type(s) generef (*5)

Objects Object Type(s) objectref (*6)

(*1): Used for concatenating copybooks and PDSs that contain copybooks. These are used for Object Type(s) with COPY function. (can contain

multiple Object Types).

(*2): Used for generated Load-modules. These are used for Object Type(s) with LOAD function (can contain multiple Object Types).

(*3): Used for generated listings. THese are used for Object Type(s) with LIST function (can contain multiple Object Types).

(*4): Used for generated db2 dbrm's. These are used for Object-type with GENERATE function

(*5): Used for other components that are generated. These are used for Object Type(s) with GENERATE function. Except the DBRM Object Type (can

contain multiple Object Types).

(*6): Used for managing a list ${objectlibs} of object PDSs in the Bind step. These are used for Object Type(s) with GENERATE function.

Multiple Object Types must be seperated with a comma character.

In case of a double compilation the LOAD and the LIST properties should contain two Object Types each.

“options” properties (to activate actions for the environment Phases)

Property Value Description

DB2 YES or NO

CICS YES or NO

IMS YES or NO

SAS YES or NO

DATACOM YES or NO

ORACLE YES or NO

JES YES or NO

SDF2 COBOL or PLI

BIND PLAN or PACKAGE

NDVR Type or Language (Free text)

QMF FORM, PROC, QUERY

DEBUG ABENDAID, IDF, SMARTTEST, XPEDITER

JMAN JMODEL (Free text)

SERVICE YES or NO

27DevOps for z/OS - How to prepare your Kobee installation for z/OS

Property Value Description

EXPANDSRC YES or NO Expand source

DOUBLE YES or NO

CUSTOMER Free text Customer CICS value

LANG XML Impact Analysis language

LANGMDL Model to replace the default (in "languagesZOS.properties") model Extra compile models

LINKMDL Model to replace the default (in "languagesZOS.properties") model Extra linkedit models

IDDTYPE ADSA, DIALOG, IDMSDDDL, MAP, SCHEMA, SUBSCHEMA IDMS Kobee type

REFTYPE DDDL, MAPS, SCHEMA, SUBSCH IDMS reference type

DICTYPE APPL, DIALOGS, FILE, MAP, MODULE, PROGRAM, PROCESS, RECORD,

SCHEMA, SUBSCHEMA, TABLE

IDMS dictionary type

“zos” properties (Definition of DSN properties for the z/OS Object Type)

Property Description

acronym Acronym (3 to 4 characters)

dsorg PO or PS

type PDSE

lrecl integer

blksize integer

recfm FB,FBA,VB,VBM,U

space PDS space

unit Unit location

llq Last Level Qualifier

xmit Last Level qualifier for xmit with temporary PDS/PDSE

path Unix Path in z/OS

suffix Associated Unix suffix/extension file (lowercase)

getrule Rule criteria from member name for ftp get selection

getselect Select criteria from getrule selection

mgetrule Rule criteria from member name for ftp mget selection

mgetselect Select criteria from mgetrule selection

“useroptions” (Special options)

Property Description

loadsuffix Suffix for map load-module name

suffix Suffix for service generated source name

buildScript Build script for starting an external script after compilation

deployScript Deploy script for starting an external script after JOB execution

debugger Compile with debugger

28 DevOps for z/OS - How to prepare your Kobee installation for z/OS

Appendix B
Default Project properties
The table below shows if properties are retrieved from Kobee and whether they are changed internally by the Phases (if
so, it will be explained in the descriptions). It also shows other global properties that can be set if the default behavior
is not adequate. These properties are used everywhere.

Property Value retrieved from Kobee Description

${projectAcronym} ${alm.project.name} *1

${projectRelease} ${alm.project.name} *2

${objectVersion} *3

${packageName} ${alm.package.name} (OR ${alm.levelRequest.vcrTag} when ‘Release-based’)

${packageNumber} ${alm.package.oid} *4

${alm.package.extended.oid} ${alm.package.oid} *5

${project.zos.name} ${alm.project.vcrProjectName}

${project.zos.release} *6

${project.zos.package} *7

${project.zos.packageNumber} *8

${project.zos.objectVersion} *9

${buildNumber} ${alm.build.number} *10

${package.zos.version} *11

${package.zos.prefix} *12

${environmentName} ${alm.deploy.environmentName} OR ${alm.build.environmentName}

${this.requester} ${alm.levelRequest.requester} *13

(*1): Applies REGEX expression ^(\w{2}).*

(*2): Applies REGEX expresssion .*-(\d*)$ if possible else default (1)

(*3): 1 (is default)

(*4): OR using REGEX expression .*-([0-9]+)$) from ${packageName} if possible else default (1)

(*5): Prepended with ‘zero’ characters until max length of 7 is reached

(*6): ${projectRelease} formatted using: TEMPLATE (default = R??), prepends with ‘R’ character followed by zeros

(*7): ${packageNumber} formatted using: TEMPLATE (default = P?????), prepends with ‘P’ character followed by zeros

(*8): ${packageNumber} formatted using: TEMPLATE (default = ??????), prepends with zeros

(*9): ${objectVersion} formatted using: TEMPLATE (default = 1.00${projectRelease}.???), prepends with ‘1.00${projectRelease}.’ and zeros

(*10): Prepends ${alm.build.number} with ‘B’ character followed by zeros until a max length of 8 is reached

(*11): ${project.zos.name}_${project.zos.release}_${project.zos.package}

29DevOps for z/OS - How to prepare your Kobee installation for z/OS

(*12): ${project.zos.name}_${project.zos.release}_${project.zos.package}

(*13): Uppercase format

Changing templates and patterns

The table below shows the syntax to add a custom parameter in the Default Project properties so that the templates
and patterns can be customized.

Property template or pattern Default value

project.zos.release.template R??

project.zos.package.template P?????

project.zos.packageNumber.template ??????

project.zos.objectVersion.template 1.00${projectRelease}.???

buildNumber.template B???????

projectAcronym.pattern ^(\w{2}).*

projectRelease.pattern .*-(\d*)$

packageNumber.pattern .*-([0-9]+)$

Special case properties

The Job Name property: ${jobname} is generated from the Userid z/OS (zos.userid) property defined in the Build and
Deploy Environment Configuration.

(Note: It is initiated by the Username (userid) parmsFTPZOS properties file and completed with a phase suffix depend-
ing on the Phase in course. The zosCompilation Phase increments this phase-suffix for managing several JCLs on JES
together.)

30 DevOps for z/OS - How to prepare your Kobee installation for z/OS

Appendix C
Practical example on how properties are used in the models
1.	 Compile model sample

// SET PARMCOB='${compilation.lang.parms}'

// SET PARMCOB0='${pgm.compile.parms.batch}'

//***

//** COMPILE THE ELEMENT ${ref.acronym}.${member}

//***

//${pgm.language} EXEC PGM=${compilation.lang.program},COND=(${compilation.lang.rcmax},LT),

// PARM=(&PARMCOB,

// &PARMCOB0,NOMDECK),MAXRC=${compilation.lang.rcmax},WARNING=${compilation.lang.warning}

//STEPLIB DD DISP=SHR,

// DSN=${compilation.lang.prefix}.${compilation.lang.lib}

//SYSIN DD DISP=(OLD,PASS),DSN=&&&SRCOMPIL

//SYSLIN DD DISP=(,PASS),DSN=&&OBJECT,

// UNIT=SYSDA,SPACE=(CYL,(2,2)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT8 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT9 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT10 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT11 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT12 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT13 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT14 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT15 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSPRINT DD DISP=(MOD,PASS),DSN=&&COMPLIST,

// UNIT=SYSDA,SPACE=(TRK,(10,90),RLSE)

//* DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)

//*

//SYSMDECK DD DISP=(MOD,PASS),DSN=&&SYSMDECK,

// UNIT=SYSDA,SPACE=(TRK,(10,90),RLSE)

//* DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)

//SYSLIB DD DISP=(,PASS),DSN=&&SYSLIBCP,

// UNIT=SYSALLDA,SPACE=(TRK,(1,1,1),RLSE),

// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=27920)

${copylibs}

${extendedCopylibs}

31DevOps for z/OS - How to prepare your Kobee installation for z/OS

Generated properties

The generated “${ref.acronym}” property corresponds with the MAP/SRC object type “zos=acronym:xxx”.

The generated “${member}” property contains the member name (in uppercase with a max. length of 8 characters)
coming from the source name.

For a compilation process, models may have the generated values of properties “${copylibs}” or “${incllibs}”.

The PDS names for the SYSLIB for all “copyref” object-types are concatenated. The SYSLIB DDN and DSN first card must
be defined in the model(s).

The concatenation is defined in the environment_build_zos property file with “env.lib.level.compile.n” and/or “env.
path.level.compile.n“ properties.

“${extendedCopylibs}” uses the “extendedCopylibs_jcl.model” with the substituted properties:

//${ignore.assemble} DD DISP=SHR,DSN=${compilation.lang.prefix}.${compilation.lang.copylib}

//${ignore.cics} DD DISP=SHR,DSN=${cics.prefix}.${cics.lang.copylib}

//*${ignore.db2} DD DISP=SHR,DSN=${db2.linklib.prefix}.${db2.lang.copylib}

//*${ignore.assemble} DD DISP=SHR,DSN=${env.prefix}.PROD.${compilation.lang.copylib}

//*${ignore.cobol} DD DISP=SHR,DSN=${env.prefix}.PROD.${compilation.lang.copylib}

//*${ignore.pli} DD DISP=SHR,DSN=${env.prefix}.PROD.${compilation.lang.copylib}

env.lib.level.compile.0=${env.lib}

env.lib.level.compile.0.suffix=

env.lib.level.compile.1=${env.prefix1}.${env.qualifA}

env.lib.level.compile.1.suffix=

env.lib.level.compile.2=${env.prefix2}.${env.qualifB}

env.lib.level.compile.2.suffix=

env.lib.level.compile.3=${env.prefix3}.${env.qualifC}

env.lib.level.compile.3.suffix=

env.lib.level.compile.4=${env.zos.prefix}.${env.qualifD}

env.lib.level.compile.4.suffix=

32 DevOps for z/OS - How to prepare your Kobee installation for z/OS

2.	 Link-edit model sample

//***

//** LINKEDIT PROGRAM **

//***

// SET PARMLNK='${linkedit.lang.parms}'

// SET LINKOPT='${pgm.link.parms.batch}'

//LKEDIT EXEC PGM=${linkedit.lang.program},COND=(${linkedit.lang.rcmax},LT),

// PARM='&PARMLNK',MAXRC=${linkedit.lang.rcmax}

//* PARM=(&PARMLNK,&LINKOPT),MAXRC=${linkedit.lang.rcmax}

//SYSLMOD DD DISP=SHR,

// DSN=${linklib1}(${pgm.loadname})

//SYSDEFSD DD DUMMY

//SYSPRINT DD DISP=(MOD,PASS),DSN=&&LINKLIST,

// UNIT=VIO,SPACE=(TRK,(10,10)),

// DCB=(RECFM=FBA,LRECL=122,BLKSIZE=0)

//SYSLIB DD DISP=(NEW,DELETE,DELETE),DSN=&&SYSLIBLK,

// UNIT=${env.zos.unit},SPACE=(TRK,(1,1,1)),

// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0)

${linklibs}

${extendedLinklibs}

Generated properties
A link-edit and other models may contain following generated values of properties:

•	 “${lctlibs}” contains generated PDS libs in concatenation used in “copyLct_jcl.model”, if LCT function is activated.
•	 “${linklib}” contains generated PDS of first loadref lib.
•	 “${linklib[i]}” contains generated PDS of each loadref object-type in desired order.
•	 “${linklibs}” contains generated PDS of SYSLIB for all loadref object-types in concatenation.

The concatenation is managed in the environment_build_zos.properties file (or similar) by the “env.lib.level.link.n”
properties.

•	 “${objectlibs}” contains generated PDS of SYSLIB objectref object-types in concatenation
•	 “${extendedLinklibs}” uses the extendedLinklibs_jcl model with the substituted properties
•	 “${listlib}” contains generated PDS of first listref object-type
•	 “${listlib[i]}” contains generated PDS of each listref object-type in indicated order (i).
•	 “${genlibs}” contains generated PDS of SYSLIB generef object-types in indicated order (i).
•	 “${[objtype].ignorelib}” and “${[objtype].ignorepath}” provide a star “*”

if the z/OS file is available on a PDS or on a Unix folder, except for LIST function object-types.
•	 “${listing.ignorelib}” and “${listing.ignorepath}” provide a star ”*”

if the z/OS file is available on a PDS or on a Unix folder. That is depending on the object-type “zos” line where the
“path” is defined or not.

33DevOps for z/OS - How to prepare your Kobee installation for z/OS

LOAD function object-types:
•	 “${[objtype].acronym}” contains “zos=acronym:xxx” of LOAD object-type
•	 “${acronym[i]}” contains “zos=acronym:xxx” of object-type [i]
•	 “${loadlib[i]}” contains PDS (using llq) or full Unix path of object-type [i]
•	 “${xmitfile[i]}” contains PDS (using xmit) of object-type [i]
•	 “${pgm.loadname[i]}” contains source load-module names [i]
•	 "${pgm.prodname[i]}" contains source load-module names[i] for Production deployment.

For LIST and GENERATE and DBRM function object-types:
•	 “${[objtype].acronym}” contains “zos=acronym:xxx” of object-type
•	 “${[objtype].zos.llq}” or “${[objtype].zos.path}” contains the llq or path of object-type
•	 “${genlib_[objtype]}” contains PDS or full Unix path of object-type
•	 For DBRM function object-type with DB2:
•	 “${objtype.dbrm}” contains the dbrm object-type
•	 “${dbrmlib}” contains PDS of dbrm object-type

All “${pgm…}“ properties as “${pgms…}” properties in defaultPgms property file.

Other default generated properties are defined in the Default Project properties fle as mentioned Appendix B.

© Copyright 2024 IKAN Development N.V.

The IKAN Development and Kobee logos and names and all other IKAN product or service names are trademarks of IKAN Development N.V. All other
trademarks are property of their respective owners. No part of this document may be reproduced or transmitted in any form or by any means,
electronically or mechanically, for any purpose, without the express written permission of IKAN Development N.V.

IKAN Development
Motstraat 30

2800 Mechelen, Belgium
Tel. +32 15 238427

info@kobee.io
www.kobee.io

	Key components
	Other components
	Setting up the z/OS solution
	The z/OS solution Phases
	Creating a project in Kobee
	Adding Phase to the Project Environments
	Models and Resources used by the z/OS solution Phases

	How to get started
	Verifying the JCL Models
	Configuring the Resources
	1. General
	2. Preprocessor
	3. Compilation Configuration
	4. Build Environment Configuration
	5. Deploy Environment Configuration

	Exporting the Configuration Set
	Phase parameters in Kobee
	Location parameters
	Machine Parameters
	Build Environment Parameters
	Test and Production Environment Parameters
	Build Phases Parameters
	Test and Production Phases Parameters

	Creating backups and performing imports in KRC
	Creating and restoring Configuration Set backups
	Importing files and models
	Single Configuration File
	Configuration File Archive
	Model Archive

	Appendix A
	Object types: function types and properties
	Function types
	“luw” properties (definitions for Linux, Unix or Windows)
	“match” properties (Object Types to match for compilation)
	“options” properties (to activate actions for the environment Phases)
	“zos” properties (Definition of DSN properties for the z/OS Object Type)
	“useroptions” (Special options)

	Appendix B
	Default Project properties
	Changing templates and patterns
	Special case properties

	Appendix C
	Practical example on how properties are used in the models
	Compile model sample
	Link-edit model sample

