
1Legacy SCM modernization

What are the requirements of
a modern SCM solution?

Moving from Waterfall to Agile

We personally don’t see this as a religion as
both methodologies have their pros and cons. And some
Agile principles can easily be applied in a current main-
frame setup.

When people say they want to move from waterfall to
agile, moving to a more modern tooling is what they
usually mean. They see the mainframe as an isolated
dinosaur and that dinosaur needs to be a part of their
enterprise IT and they want reuse (standardisation) of
tooling. And maybe some projects need to use the water-
fall methodology and others projects need Agile.

Modern IDE’s

Also mainframe customers want to move from
text based editors like ISPF (although we think this is a
great editor).

Why? The modern IDE’s that are Eclipse based or IDE’s
like VS Code offer standard integrations with productiv-
ity tools and are important to attract young graduates.

Integrate with other (open
source) tools and standards
That brings us to our second point. What peo-

ple really want is a kind of “plug and play” sustainable
solution. Example: the current legacy SCM systems have
their own proprietary source version control. Enterprises
want standards. Standards that evolve and mature. A few
years ago, CVS was the go-to version control repository,
soon it got replaced by Subversion, where today Git is the
de facto standard.

Git, by example, is not just a standard, but it is also open
source (free/no cost) and widely accepted in both the dis-
tributed world and having attraction in mainframe land.
For issue tracking and project management Jira seems
to be the standard.

Same for testing. There are both open source and com-
mercial solutions that can be used for just distributed or
mainframe or both. Like SonarQube.

Finally, as they want sustainability they want to make
sure that if Git has a successor they can easily move with-
out having to change everything.

Although all current customers recognize
the great value that legacy solutions like
Serena ChangeMan, CA Endevor or Harvest,
Compuware ISPW and IBM ISPW gave them,
today they want to make the next step and
they want their SCM (Software Change
Management) to be Modern, adapted to the
current software development and deploy-
ment practices.

What are current users of legacy SCM solutions for the
Mainframe looking for?

... they want to Modernize!

2 Legacy SCM modernization

What are mainframe
customers missing here?

Again, in our opinion mainframe environments are not
that different from other environments.

You develop code (COBOL, Assembler, ...) using a modern
IDE , you version the code (in Git) and then, just like in
Java you need to build and deploy that code.

How does that work?
Mainframes are using JCL (Job Control Language) as
scripting language to build and deploy your code.

Today there are solutions that allow you to build and
deploy your code on non-mainframe platforms (Windows
or Linux) or that allow you to do this on the mainframe,
all starting from Git.

But first some mainframe lingo.

Mainframes use PDS’s or Partitioned Data Sets to store
sources and executables. A PDS is mostly the same as a
Windows directory with a number of files.

Some other naming differences between the distributed
and mainframe domain are:

Distributed Mainframe
Executable Load Module
Build Compile
Deploy Promote
Start build Submit (Sub)

Parallel development

Modern development means that you want to
have the ability to do parallel development.
Modern version control solutions like GIT make this pos-
sible through their branching.

You can work on as many releases as you want. You can
have a major new release, together with a minor upgrade
and the ability to fox bugs what is currently in production.

Cost effective

Cost effective doesn’t mean that everything is
for free. Even Open Source comes at a cost: implementa-
tion, maintenance, management,.. and you need skilled
resources.

What customers want is an ideal cost effective mix that
gives the best value for money. And they are willing to
spent money as in the end they want quality, minimal
risk, cost effectiveness and a fast time to market.

Enterprise solution

The ideal scenario is that for each step in the
process you can have one solution, that can be used
enterprise wide.

Like Git for version control and this for all kind of sources
you may have, including your mainframe programs.

COMMITDEVELOP

BUILD

DEPLOY

3Legacy SCM modernization

In other words to have a modern SCM process (nowadays
referrerd to as "CI / CD") for mainframes you need to:

1.	 Transfer the sources from Git to a PDS
2.	 Generate the compile and promote JCL
3.	 Submit and then run the JCL (job) on the mainframe
4.	 Retrieve the results (compile listing, load modules,..)

Kobee is a CI/CD solution that meets
these requirements.

Kobee makes it easy to integrate your mainframe
into a contemporary software development and
deployment way of working.

It's more than just an alternative for:
•	Serena Change Man (now Micro Focus Change Man ZMF)

•	CA Endevor

•	Harvest (now Broadcom Endevor or Harvest)

•	Compuware ISPW (now BMC ISPW)

•	CA Panvalet

•	CA Librarian

•	IBM SCLM

We offer a full implementation service. All we need is
the current version of you desired compile and deploy
JCL’s.

•	Easy integration with tools like Jira, Git and testing
tools

•	Project setup:
Branch based project streams, where each
project stream has his own life cycle with a build
level, one or more testing and production levels.

•	Fully customisable Build and Deploy environments
using:
•	Predefined Phases for compile and promote

with predefined models for JCL cards
•	Release or Package based (just these sources

you want, not a full branch) build and deploy
•	Machine, Environment or Phase based

parameters

•	Pre- and Post-approval management

•	Easy to setup and use (web based interface)

•	Can be used for non-mainframe environments
too. By importing dedicated Phases (Build and
Deploy scripts)

•	Project dependencies:
You can have separate projects, let us say one for
mainframe COBOL, one for Java. The dependency
features makes sure that both travel through the
life cycle together.

Kobee is a commercial yet cost effective solution
trusted by other companies such as:

Contact us
info@ikan.be
www.kobee.io

© Copyright 2024 IKAN Development N.V.

The IKAN Development and Kobee logos and names and all other IKAN product or service names are trademarks of IKAN Development N.V. All other
trademarks are property of their respective owners. No part of this document may be reproduced or transmitted in any form or by any means,
electronically or mechanically, for any purpose, without the express written permission of IKAN Development N.V.

IKAN Development
Motstraat 30

2800 Mechelen, Belgium
Tel. +32 15 238427

info@kobee.io
www.kobee.io

