
Integrating Kobee and
Mainframes

Cost-effective and easy to implement Enterprise-wide ALM for
both mainframe and non-mainframe environments

2 Integrating Kobee and Mainframes

Table of contents
Kobee: The Ideal ALM Solution for the Mainframe ..4

Kobee – User’s Point of View ...4

Step1: Log on and display the Desktop Overview ..5

Step 2: Create/update a package and link it to a Project Stream ...6

Step 3: Select the required Action ...9

Step 4: Create the Level Request ..9

Alternative Way: Commandline Interface (CLI) ... 10

Additional information provided by Kobee .. 11

What happens behind the scene? .. 14

Kobee –Administrator’s Point of View ..20

Step1: Create the global Phases ...20

The Phase concept ...20

The Kobee Phase Structure ...20

The Common Files ..20

The Resource Files ..21

The Model files..23

The compileCobol_jcl.model .. 24

An Kobee phase and its usage: the z/OS compile phase ...25

An Kobee phase and its usage: the z/OS deployment phase ... 27

Step 2: Create the Kobee project(s) ...28

Step 3: Adapt the lifecycle (if necessary) ...29

Step 4: Define the environments and the necessary parameters ..30

Step 5: Add phases .. 31

Step 6: Modify the phase parameters ..32

Conclusion ..34

Related Document ...34

Appendix I: Kobee Terminology ..35

Appendix II: CA-ENDEVOR Terminology ...36

Appendix III: Serena ChangeMan ZMF terminology ...38

Appendix IV: Available z/OS Kobee Phases ..39

Appendix V: Migration to Kobee .. 41

Appendix VI: Sample of z/OS compilation JCL ... 41

3Integrating Kobee and Mainframes

This document aims at explaining how, by using
Kobee, you can manage your application lifecy-
cle, be it on mainframe or on distributed systems
or on a combination of the two, and how you can
easily deploy the developed applications on the
mainframe.

We will describe in detail how Kobee works
and what the different tasks are for Users and
Administrators.

We are confident that after having read this doc-
ument, you will be convinced of the enormous
advantages of putting in place our Kobee solution.

If you would still have questions, do not hesitate to
contact us.

Summary
This technical document is intended for
developers, technical people, mainframe
or non-mainframe experts, and software
architects.

Kobee is a web-based Application Lifecycle
Management tool. It combines continuous
integration and lifecycle management,
offering a single point of control and
delivering support for build and deploy pro-
cesses (manually generated or automated),
approval processes, release management,
and software lifecycles. Kobee tightly inte-
grates with leading third-party versioning
solutions, build and deploy tools, and issue
tracking software. It supports both main-
frame and non-mainframe systems and, in
case of mixed environments, it will handle
the dependencies between both systems.

Remark: Although Kobee supports many types
of mainframes (IBM, Fujitsu, Unisys, Bull,..), we
will use IBM z/OS as an example throughout
this document.

4 Integrating Kobee and Mainframes

Kobee: The Ideal ALM Solution for the Mainframe
In the following section, we will explain more in detail how Kobee handles the lifecycle to compile and deploy your
applications on the mainframe.

Today, traditional mainframe development is already often enhanced with Eclipse-based development to address the
requirements of modern end-user applications. The main issue when combining mainframe and distributed develop-
ment, is how to deploy the developed applications on the mainframe.

We will cover 2 points of view: the Kobee User and the Kobee Administrator.

Kobee – User’s Point of View
Once the initial setup has been done and the projects have been set up by the Kobee Administrator,
a User can start using Kobee.

Basically, a User can create a Compile/Build or Deploy action (a “Level Request” in Kobee termi-
nology) in 4 steps:

1. Log on to Kobee and display the Desktop Overview
2. Create or update a package and link it to a Project Stream
3. Select the appropriate Action (Compile/Build or Deploy)
4. Create the Level Request

Once the Level Request is created, a series of information screens will be available to provide additional information on
the requested action, allowing following up its status and the results.

A User creates/updates packages to compile
and deploy (promote) one or more programs he
developed.

The initial Kobee setup for the mainframe
and the project setup are done by the Kobee
Administrator.

5Integrating Kobee and Mainframes

Step1: Log on and display the Desktop Overview

Next, the Desktop Overview will be displayed showing the list of Project Streams or Packages the User is working with.
This Desktop can be completely customized.

The following basic information will be displayed:

•	 Project type: release-based or package-based
•	 Project Stream (package) name
•	 Defined Levels:

A level is a logical step in the application lifecycle. The available levels are: Build (Compile), Test and Production.
One or more of each of those levels can be used to define a lifecycle.

Step 1

Kobee logon screen

Desktop Overview for the z/OS project

6 Integrating Kobee and Mainframes

•	 Next Scheduled Request:
If a Schedule was assigned to a Level (like in continuous integration) this field contains the execution date and
time of the next request.

•	 Latest Level Request: shows the status of the latest request, the VCR tag and timestamp.
•	 Latest successful Level Request: shows the latest successful level request
•	 Action: the available action icons for the Level. When clicking an action button, a level request will be started.
•	 Message: if it is not possible to define a request for a specific level, this message indicates the reason.

The z/OS project we use here as an example is a package-based project for which the following Levels have been defined:
a Build Level (BUILDZOS) and some Deploy Levels (ZOSTEST, MILESTONE and PRODZOS). Those Levels are linked to
Lifecycle(s), and the Project Stream(s) (i.e., the Head or a Branch) is/are also linked to a Lifecycle.

For mainframe use, a project must be package-based. A package allows the User to select one or several components
of a Project Stream which should be built and deployed together, ignoring the other Project Stream components. Such
a package has to stay coherent for building and deploying. A Package (of components) will always be linked to a Project
Stream (in our example: ZOSDEMO H_1.0 Pack-001) and it will always follow that Project Stream’s lifecycle. Also, a
package has to progress with the Project Stream’s lifecycle independently of possible other packages linked to the same
Project Stream.

For distributed release-based projects, on the other hand, all components are built and deployed together.

Step 2: Create/update a package and link it to a Project Stream

Before compiling/building, the User has to create a package that contains the sources he wants to compile/build and
the copybooks.

1. First of all, the User has to specify the link to the correct Project Stream.

Step 2

Select Project Stream

7Integrating Kobee and Mainframes

2. Next, he has to specify the name and description for the Package.

3. Once that is done, the User can select the required programs.
Kobee will display all the files available for the selected Project Stream. The User can select the files and indicate
the required revision number. Many types of files can be selected, built and deployed in the same process. (i.e.,
JCLs, Procs, Maps, Sysin, SQL, Sources with Assemble, COBOL, Pl/1 languages, IDMS entities,..).

The following figure shows the package information before selection.

Create Package

Package info before selection

8 Integrating Kobee and Mainframes

The next figure shows the package information after the selection of the required files.

The final Package content would look as follows:

Once the Kobee User has defined the package, he can start building/compiling and, next,
promoting or deploying his programs.

Package info after selection

View package

9Integrating Kobee and Mainframes

Step 3: Select the required Action

To execute a build/compile or deploy, the User can simply click the required action button in the Action column.

Step 4: Create the Level Request

To start a compile for the project in our example, the User would click the appropriate Level Request action button at
the Build Level. Next, the Create Level Request screen will be displayed.

Step 3

Step 4

View package

10 Integrating Kobee and Mainframes

On this screen, the User can enter a description, view the parameters linked to the level request and, if configured that
way, change some parameter values.

By clicking the Create button, the level request will be created and the process will start.

Alternative Way: Commandline Interface (CLI)

Another possibility to create a Compile/Build or Deploy action is to use the Commandline Interface (CLI) and to use the
external tool configuration from Eclipse to configure the Level Request from within Eclipse.

In fact, that is all a User needs to do for compiling all the programs in his package: go to his Desktop,
click the appropriate action button and create a Level Request to execute a Build/Compile or a Deploy.

External Tool Configuration from Eclipse

L a u n c h K o b e e
L e v e l R e q u e s t

to Compile from
within Eclipse

11Integrating Kobee and Mainframes

Additional information provided by Kobee

Besides creating a Level request, Kobee also provides a lot of additional information to a User:

•	 An overview of each Level Request.
•	 For each Level Request: detailed information through the interface.
•	 Kobee reports. Kobee comes with predefined reports, but the User can also define his own reports.

On the following pages we will show some sample Kobee screens with more detailed information, such as the detailed
Level Request information, the Build Log, the used Parameters, a sample report, a sample notification e-mail and the
integration with an Issued Tracking System.

Finally, we will also show what happens behind the scene on the mainframe.

Level Request: Detailed Overview

12 Integrating Kobee and Mainframes

Build log

Used

parameters

13Integrating Kobee and Mainframes

Kobee Report sample, Project stream overview

Email received after successful Level Request

14 Integrating Kobee and Mainframes

What happens behind the scene?

The following z/OS screens show the corresponding actions on the mainframe.

The first z/OS Phase copies the copybook(s) and the programs (and, if existing, also the special components for com-
piling) to the z/OS environment.

The following screen shows the files that have been collected from the VCR and that are transferred via FTP to the main-
frame in a PDS with IKAN ALM.DEMOS.TEST.SRCBATCH as PDS name.

Integration with Issue Tracking: JIRA issue

DEMO21 project

15Integrating Kobee and Mainframes

After this FTP Phase, the second phase, Z/OS program compile, is executed.

This phase creates the JCL (See Appendix V: Sample of z/OS compilation JCL), transfers that JCL via FTP to the main-
frame and submits the job.

The results will also be available in the Kobee Phase log. That log will list all executed events, step by step, and will tell
if the compile has been executed successfully or not.

The following screen shows the JCL jobs that have been submitted and that are executed.

The following screen shows the result of the execution on the mainframe:

SDSF Status Display

SDSF Output Display

16 Integrating Kobee and Mainframes

When the Job is completed with success, the listing and the load module are transferred via FTP to the Kobee target
environment. The following screen shows the sequential file generated by the Xmit step for transfering the load module
to the Kobee target environment.

As a result, Kobee has the listing and the load module in his archive. At this point, Kobee is in full control of the remainder
of the steps in the lifecycle.

Sequential Xmit file

Content of Build Archive

17Integrating Kobee and Mainframes

From the Kobee archive, the load module can be deployed or promoted to a test or production level by simple starting
a Deploy (promote) Level Request that executes a receive step.

The next step is the Deploy or Promote of the compile results. The following screen starts the Deploy.

For the Deploy, Kobee is using the same process as for a Compile/Build: A Deploy Level and Environment with its
related z/OS phases must be created.

The z/OS phases defined here are:
•	 The promote (FTP) of load-modules and other components to the mainframe
•	 Delete obsolete files and associated components (such as load modules, listings)
•	 The DB2 Bind statements, transfer (FTP) and DB2 Job execution
•	 The activation of the CICS load-modules

During this Level Request, the files are copied via FTP to their respective PDS(s) and special jobs can be created and
executed on z/OS The Load-modules are received through a transmitted sequential file to the PDS.

The FTP and Job results are analyzed for validating the executed deployment actions. In case of errors, messages are
transmitted to the Kobee log and the deployment is stopped.

Starting a deploy

18 Integrating Kobee and Mainframes

Kobee log

19Integrating Kobee and Mainframes

The following screen shows the JCL for receiving this transmitted sequential file.

The following screen shows the load modules after FTP from the Kobee archive to the mainframe in a PDS:

Receive program

PDS with load modules

20 Integrating Kobee and Mainframes

At this moment our programs are available for testing in the z/OS Test environment.

The deployment to another z/OS Environment, be it another LPAR or Production environment, is a similar process.

Kobee –Administrator’s Point of View
Before Users can start working in Kobee, the Kobee Administrator needs to set up and configure
Kobee. Next, he will take care of creating the Kobee projects and specifying the required param-
eters for the environments and phases.

To make his task as easy as possible, Kobee has introduced the concept of Phases. Phases allow
the Kobee Administrator to customize the workflow of the projects by using highly reusable build-
ing blocks. Phases can be shared between different Projects, but also between different Kobee
installations.

He will use and customize the Kobee pre-defined “Core” phases to transfer the required components to the mainframe,
to create the necessary JCL, to submit the JCL and to transfer the results back to Kobee.
If needed, he can also create his own “Custom” Phases.

Step1: Create the global Phases

The Phase concept
To compile or deploy programs one or more phases are executed via Kobee.

In this section, we will first explain the different components of the phases and, next, we will show how a phase is rep-
resented and used in Kobee.

The Kobee Phase Structure

The Common Files

Step 1

21Integrating Kobee and Mainframes

As an example, we have here a common script file that is used for linking a COBOL program. This common file will be
used as a template to finally generate the correct and complete JCL step for linking a program.

The Resource Files
Resource files are used to define specific, reusable properties

Link file template

22 Integrating Kobee and Mainframes

As an example, the COBOL2 language definitions from the languages.properties file:

The example below shows the generated properties to use the COBOL2 language definitions in a COBOL program:

--

Properties for ZOS Languages

- called after (Environment).properties

- property format: (language).parameter

--

env.prefix=

env.qualifA=

COBOL2 compilation parameters

COBOL2.program=IGYCRCTL

COBOL2.parms=LIST,LIB,NOSEQ,NOCMPR2,MAP

COBOL2.parmlib=${env.prefix}.${env.qualifA}.PARMLIB

COBOL2.prefix=SYS1.CEE

COBOL2.loadlib=${COBOL2.prefix}.SIGYCOMP

COBOL2.suffix=SCEELKED

COBOL2.link.parms=LIST,MAP,XREF,NCAL

COBOL2.cics.program=DFHECP1$

COBOL2.cics.parms=COBOL2,LANGLVL(2),NODEBUG,NOSOURCE,SP,NOOPT

COBOL2.cics.linkModule=DFHECI

COBOL2.cics.db2.linkModule=DSNCLI

COBOL2.db2.program=DSNHPC

COBOL2.db2.parms=HOST(COB2),APOST

COBOL2.db2.linkModule=DSNCLI

COBOL2.dtcm.program=DBXMMPR

COBOL2.dtcm.parms=DBOPTBAC

COBOL2.dtcm.parms.cics=DBOPTCIC

COBOL2.dtcm.linkModule=DBXHVPR

COBOL2.idms.program=IDMSC

COBOL2.idms.parms=(COBOL)

COBOL2.idms.linkModule=IDMSCBL

COBOL2.ims.program=DSNIPC

COBOL2.ims.parms=(COBOL2)

COBOL2.ims.linkModule=DSNILI

COBOL2.linkedit.program=HEWL

COBOL2.ndvr.type=COBOL

#Ant properties

#Mon Sep 30 10:57:09 CEST 2013

pgm.amode=31

pgm.cics=true

pgm.compile.parms=DATA(31),${RENT}

pgm.compilerType=IBM

pgm.db2=true

23Integrating Kobee and Mainframes

The	Model	files
Model files are used as templates for JCL steps.
As an example, we added a model for a JCL to compile a COBOL program, with a COBOL2 compiler.

pgm.db2.collection=xxxxIKAN1

pgm.db2.path=xxxxFUNC

pgm.db2.plan=ULC010

pgm.db2.sql=true

pgm.debugger=true

pgm.language=COBOL2

pgm.link.parms=

pgm.loadname=ULC010

pgm.name=ULC010

pgm.noname=true

pgm.os=ZOS

pgm.reus=RENT

pgm.rmode=ANY

pgm.type=program

24 Integrating Kobee and Mainframes

The compileCobol_jcl.model

//***

//** COMPILE COBOL2, store object in objlib if compile=ok

//** compile listing is stored in ${env.lib.listA}

//***

// SET PARMCOB='${lang.parms}'

// SET PARMCOB0='${pgm.compile.parms}'

//***

//** COMPILE THE ELEMENT **

//***

//${pgm.language} EXEC PGM=${lang.program},COND=(4,LT),

// PARM='&PARMCOB0,&PARMCOB',MAXRC=4

//STEPLIB DD DISP=SHR,DSN=${lang.loadlib}

//SYSIN DD DISP=(OLD,PASS),DSN=&&&SRCOMPIL

//SYSLIN DD DISP=(,PASS),DSN=&&OBJECT,

// UNIT=SYSDA,SPACE=(CYL,(2,2)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSPRINT DD DISP=(,PASS),DSN=&&COMPLIST,

// UNIT=SYSDA,SPACE=(TRK,(10,10),RLSE)

//* DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)

//*

//SYSLIB DD DISP=SHR,DSN=${copylib}

//${copylib1}

//${copylib2}

//${copylib3}

//${copylib4}

//${inc2lib0}

//${inc2lib1}

//${inc2lib2}

//${inc2lib3}

//${inc2lib4}

JCL model for COBOL compile step

25Integrating Kobee and Mainframes

An Kobee phase and its usage: the z/OS compile phase
The figure below shows the z/OS compile phase.

The objective of the z/OS compile Phase is to compile z/OS programs with, mainly, Assembler, COBOL and PL/1, BMS
map languages, and working with CICS and Databases as DB2, Datacom, IDMS or IMS. The Phase will also control the
results of the JCL submit and it will collect all files generated by the compile Jobs. Also, when applicable, the DB2 Bind
Files will be generated.

This phase assumes that the files for compiling sources and the source program files have already been transferred to
the mainframe in the correct PDSs. Normally, this would be done by a dedicated phase.

It is the task of the Kobee Administrator to make sure that the default values for the parameters are set to the company
standards. He can easily do that by changing the parameter values in the Kobee web interface.

26 Integrating Kobee and Mainframes

The execution of the z/OS Compile phase will use the z/OS compile script to finally generate a complete JCL, taking into
account all JCL steps to be executed.

The figure below shows the generated JOB card and the STEP card to compile the COBOL program. The complete gen-
erated JCL can be found in Appendix V: Sample of z/OS compilation JCL.

...

//***

//** COMPILE COBOL2, store object in objlib if compile=ok

//** compile listing is stored in IKAN ALM.DEMOS.TEST.LSTALIB

//***

// SET PARMCOB='LIST,LIB,NOSEQ,NOCMPR2,MAP'

// SET PARMCOB0='DATA(31)'

//***

//** COMPILE THE ELEMENT **

//***

//COBOL2 EXEC PGM=IGYCRCTL,COND=(4,LT),

// PARM='&PARMCOB0,&PARMCOB'

//STEPLIB DD DISP=SHR,DSN=SYS1.COB2COMP

//SYSIN DD DISP=(OLD,PASS),DSN=&&&SRCOMPIL (ULC010)

//SYSLIN DD DISP=(,PASS),DSN=&&OBJECT,

// UNIT=SYSDA,SPACE=(CYL,(2,2)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSPRINT DD DISP=(,PASS),DSN=&&COMPLIST,

// UNIT=SYSDA,SPACE=(TRK,(10,10),RLSE)

//* DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)

//*

//SYSLIB DD DISP=SHR,DSN=IKAN ALM.DEMOS.TEST.COPYLIB

// DD DISP=SHR,DSN=IKAN ALM.DEMOS.INTG.COPYLIB

// DD DISP=SHR,DSN=IKAN ALM.DEMOS.QUAL.COPYLIB

// DD DISP=SHR,DSN=IKAN ALM.DEMOS.PROD.COPYLIB

//*

27Integrating Kobee and Mainframes

The Kobee Administrator will do this for all the phases required for the mainframe Build (compile) and deploy processes
(probably for several z/OS projects).

An Kobee phase and its usage: the z/OS deployment phase
Next, we will show you an example of a Deployment Phase.
The main phase of the z/OS deployment with Kobee is the z/OS Promotion of components and load-modules’ Phase.

28 Integrating Kobee and Mainframes

Typically, the parameters are very similar, but you can specify another property file for the target environment during
the project setup if required.

Step 2: Create the Kobee project(s)

Once the global phases have been defined, the Kobee Administrator creates a release-based or package-based main-
frame project.

In this example we will show the creation of a package-based mainframe project: ZOSDEMO.

First he needs to define the General settings and the Project Stream (Baseline) settings on the following screen.

During this creation step, Kobee will also automatically create the “Head” Project Stream and the “Base” lifecycle.

Step 2

29Integrating Kobee and Mainframes

Step 3: Adapt the lifecycle (if necessary)

By default, a “Base” lifecycle is created for the Project, which can be used for defining the required Build and Deploy
Levels (i.e., the logical environments). If that lifecycle is not sufficient for the project, the Kobee Administrator needs to
define a new lifecycle.

The following screen shows how, for example, a Build/Compile level is created.

Once the Build/Compile level is created, it will be displayed on the Life-Cycles Overview screen.

Step 3

Create Build Level

Life-Cycles Overview

30 Integrating Kobee and Mainframes

Step	4:	Define	the	environments	and	the	necessary	parameters

For each (logical) Level (Build, Test or Production), one or more (physical) environments can be defined. The following
screen shows the definition of a Build Environment.

Once the Environment is created, the Kobee Administrator can define the necessary parameters for this environment.
Examples of parameters for the BUILDZOS environment are: the z/OS FTP Server address, the User ID and Password
for connecting with the z/OS LPAR.

Step 4

Create Build Environment

Environment, Parameters

31Integrating Kobee and Mainframes

Step 5: Add phases

Once the Levels and Environments have been created, the Kobee Administrator can define the Build or Deploy process
by adding Phases. When an Environment is being created, Kobee adds, by default, the Kobee core Phases.

For the z/OS platform, the applicable z/OS Phases have to be added in the correct order for execution. Two z/OS Phases
need to be inserted: z/OS Copy Sources before Compilation and z/OS programs Compilation.

Once inserted, they need to be put in the right order of execution: first the sources to be compiled have to be transferred
to the mainframe and after that the compile process can be started.

Step 5

Phase to insert

Phase Overview, right order

32 Integrating Kobee and Mainframes

Step 6: Modify the phase parameters

Each Phase comes with Default values, set by the Kobee Administrator at import.

If required, the default values of these parameters can be modified as shown on the Phase Parameters screen below.

Using the same method, the Deploy Environment is completed with the required z/OS deployment Phases such as:
‘Promote components and load-modules to z/OS’, ‘z/OS Delete Sources and associated files’, ‘z/OS DB2 Binds transfer
and activation’, ‘z/OS Cics Load-modules activation’.

Step 6

Phase parameters

33Integrating Kobee and Mainframes

Next, the Kobee Administrator changes some default parameters for its target environment:

Now that the Kobee Administrator has done his job, the User can start using Kobee for building/com-
piling, promoting or deploying his programs.

34 Integrating Kobee and Mainframes

Conclusion
Kobee offers an alternative for pure mainframe-based development by combining an Eclipse-

based development environment with a distributed version control repository. On top of that
Kobee complements the development process with Application Lifecycle Management

and deploy services.

Kobee’s major asset is its concept of Phases. JCL can be very complicated. By
using Kobee Phases, you can generate and tailor any JCL step.

Thanks to the phase concept and the available models and resources we can
also guarantee an easy and successful implementation (as an average, it will
only take a few weeks).

The key element is for you to define your ALM process. Once that has been
established, the implementation of Kobee is fast and straightforward.

If you are already using a mainframe solution like CA-Endevor or Serena
ChangeMan and you would decide to migrate to Kobee, you will of course need to

migrate your CA-Endevor or Serena ChangeMan legacy to Kobee. To do so, we have
a standard migration procedure.

For More Information
To know more, visit https://www.kobee.io
Contact IKAN Development: info@ikan.be

Related Document
Modern Mainframe Development and ALM

In a nutshell: by implementing Kobee, you can continue exploiting the full strengths of your main-
frame and seamlessly combine them with new innovative tooling. This will help you cutting down
the costs of maintaining different systems, and above all ease the work of your developers as Kobee
will take care of the different steps in the lifecycle of your application including its deploy on the
mainframe

https://www.kobee.io%0D

35Integrating Kobee and Mainframes

The following appendices explain the terminology used by the different ALM mainframe software providers.

Appendix I: Kobee Terminology
The following table explains the terms used by Kobee and provides a brief comment for each of them. This will help users
of Kobee to have a better understanding of the terminology used.

Kobee Remarks

VCR A Version Control Repository contains the components to manage. Examples of VCRs are: CVS,
Subversion, IBM ClearCase, Serena PVCS, Microsoft VisualSourceSafe.

Project A tailored Lifecycle process including development, testing, quality assurance and production
can be easily defined, implemented and enforced, offering a comprehensive framework across
all major platforms including Windows, UNIX, Linux and IBM mainframe systems. Kobee also
supports a stream-based project model allowing project managers to easily add Lifecycles to
each version of a project, which makes it easy to differentiate between maintenance, “urgency
fix” or release build and deploy processes.

Lifecycle Defines the Lifecycle(s) from Development to Production Levels for Streams.

Project Stream Each Kobee Project contains exactly one HEAD Project Stream and may contain one or more
Branches. A Project Stream is a working entity within Kobee

Level Defines every step of the Lifecycle from Development to Production, supporting physical
Environments.

Environment Kobee uses the (logical) Level concept in which (Build/Deploy) environments can be defined.
Every environment represents a Machine (Server/OS) on the network where the Source and
Target Locations are defined for executing Phases. This is a unique architectural Kobee feature,
representing the true multi-platform aspect of Kobee.

Package Instead of using a Release Project, Kobee may work with Packages in the Project. The required
files must be added manually from the VCR to the Package Kobee does not contain the Sources.
It only knows the link to the files in the VCR project.

Level Request A Level Request in Kobee starts a Build, Deploy and Rollback in the Environment(s).

Build Request The Build Level Request type in Kobee will usually take care of a compile procedure for
components.

Phase users can extensively customize the workflow of their projects, by using highly reusable build-
ing blocks, called Phases. By using the import/export features, Phases can not only be shared
between different Projects, but also between different Kobee installations.

Script (Ant) Runs the process (e.g., for build, compilation, deployment, copy, etc.) using the Source and
Target locations on the Agent machine. A script can use property files, models and other
scripts generally defined in a Phase.

Build# Kobee generates a unique build number that can be used in several processes to identify the
output from the (build/compile) procedures. Kobee is also able to put this information on
members in a Partitioned Dataset on z/OS.

36 Integrating Kobee and Mainframes

Approval Kobee allows setting up a hierarchy in the Approval Groups. For example, Group2 may only
approve if Group1 has approved first. Groups are based on the Enterprise Security System
users.

Rollback In Kobee, an automatic rollback can be executed for every kind of output, which will allow the
customer to completely automate a rollback operation. Typically, it runs a previous version of
your choice.

Machine A machine runs an Kobee Agent which will take care of building/deploying the software com-
ponents. Linux/UNIX (flavors) and Windows platforms. The Agent (LUW) machine can update
more than one LPAR via FTP connections. Z/OS Phases might be reused with models and PDS
definitions using several FTP connections.

Release Number/
Incident Number

Kobee has an ITS-plugin that allows you to easily link existing issue or defect tracking systems.
Issues are accumulated along the Lifecycle and updated automatically.

Archive Kobee compresses and saves all Build results in Archives and keeps them in a dedicated loca-
tion. Archives are identified with the Build Tag.

Report Kobee has a web interface to view per project and level request what happened. On top of that,
an ALM-Reports tool allows creating more Reports about Global and Project Administration
and Package activities.

Phase adds Remarks

Extension/
Object-type

The extension/objtype determines the processing needed for a certain file type. This is defined
by a property file and scripts. Object-types are used for z/OS activities.

Obsolete File Kobee has no process for scratching individual files. This action is resolved with an Environment
Phase which scratches the source component using the “.to_be_deleted” suffix in the VCR.
Associated z/OS components are deleted in their PDS.

Appendix II: CA-ENDEVOR Terminology
The following table maps the terms used by Kobee and CA-Endevor and provides a brief comment for each of them. This
will help the respective users of Kobee or CA-Endevor to have a better understanding of the terminology used.

Kobee CA Endevor Remarks

VCR Database/Delta CA-Endevor assumes VCR versions with the Image and Delta file(s).

Project System and/or
Sub-system

Within Kobee, the defined project needs attributes to tell Kobee to
which CA-Endevor System/Sub-system the Software Items should be
added in Environment parameters.

Lifecycle Map Defines the Lifecycle from Development to Production.

Stream Not available CA-Endevor works with a unique Project version.

Package Package CA-Endevor groups components in Batch packages.

Level Stage Defines every step of the Lifecycle from Development to Production.

37Integrating Kobee and Mainframes

Environment (Stage) This is a unique architectural Kobee feature, not known in CA-Endevor,
representing the true multi-platform aspect of Kobee.

Level Request (Move) Action CA-Endevor distinguishes more actions, but they are not directly
applicable to Kobee. For example, to delete a component from the
Production environment, the components should be deleted from
the VCR; the project should be built and deployed, and tested in all
the Levels between Development and Production, ensuring that this
deletion does not jeopardize the Production. This delete task may be
activated with a SVN property on the component (don’t delete). Next,
Kobee may assume the deletion during the deployment by using the
SVN property in a script.

Build Request (Add) Action The Build Level Request in Kobee will usually take care of populating
CA- Endevor with the Software Components (ADD action).

Phase Processor group The processor group in CA-Endevor determines the ultimate process
to run within a certain type. For example, the Processor Type COBOL
might have processor groups for COBOL, DB2, CICS, BATCH, IMS etc.

Script (Ant) Processor Runs the process (e.g., for build or compilation).

Idrdata/Build# Footprint Build# or Build number: is an incremental number given after each soft-
ware build.
IDR DATA: Identification record data field. Identification records have a
fixed format and fixed content, both defined by the program manage-
ment binder. Is used by IBM
Endevor footprints contain the following information: site ID, envi-
ronment, system, subsystem, element, type, stage, version/level, and
generate date/time.

Approval Approval CA-Endevor allows defining several Approval Groups which are in the
same hierarchy. Every group may approve on any moment.

Rollback Backout CA-Endevor allows reversing the result from a promotion/delivery if it is
a member(s) in a Partitioned Dataset (PDS). In the case of DB2 a (man-
ual) rebind should be executed.

Machine Ship CA-Endevor only supports other z/OS Logical Partitions (LPARS).

Release Number/
Incident Number

CCID The release/incident number within Kobee may be passed to
CA-Endevor as the CCID (Change Control Identifiers) most often
correspond to mechanisms such as work order requests or request-
for-service numbers.

Archive Not available CA-Endevor keeps these components in Stage Level with CCID’s.

Report Report CA-Endevor allows using Batch reports.

Extension/
Object-type

Type The extension/objtype determines the processing needed for a certain
type.

38 Integrating Kobee and Mainframes

Appendix III: Serena ChangeMan ZMF terminology
The following table maps the terms used by Kobee and Serena ChangeMan ZMF and provides a brief comment for each
of them. This will help the respective users of Kobee or ChangeMan to have a better understanding of the terminology
used.

Kobee ChangeMan ZMF Remarks

VCR Baseline/Delta/
Package

ChangeMan assumes VCR functionalities as Check-Out, Commit
(Baseline Ripple), Check-In (Freeze) from the Package Lifecycle.

Project Application ChangeMan has the same concepts as Kobee but only for IBM main-
frame systems. Also the stream-based project is not available.

Lifecycle Stage/ Promotion
Levels

Defines the Lifecycle from Development to Production.

Stream Not available ChangeMan works with a unique Project version.

Package Package ChangeMan uses the Package for the Development process up to the
Stage action. Kobee leaves development actions to the customer IDE
and the VCR. Both Kobee with Level Requests and ChangeMan with
Staging, manage Build (Compile) requests, as well as Deployments
with the Approval supervision for the Package. ChangeMan, however,
needs to update the Baseline & Stacked Reverse Delta supports in dou-
ble with the Production and the Package.

Level Promotion Level Defines every Level of the Lifecycle from Development to Production.

Environment Site (Local or
Remote)

The Local or Remote Site concept in ChangeMan is covered by the
Kobee environment concept. An Kobee level (a logical step) can have
one or more environments.

Phase Procedures or
skeletons

The skeletons in ChangeMan determine the process to run within a cer-
tain type. For example, the Procedure CMNCOB2 might have process
skeletons for COBOL, DB2, CICS, IMS, etc.. Depending on the Source
options.

Level Request Promotion/
Demotion

ChangeMan knows more actions, but they are not directly applicable
to Kobee. For example, to delete a component from the Production
environment, the components should be renamed into the VCR with
the special “.to_be_deleted” suffix. Next, the project should be built
and deployed, and tested in all the Levels between Development
and Production, ensuring that this deletion does not jeopardize the
Production. This delete task will be activated with the suffix of the com-
ponent (don’t delete). Next Kobee may assume the deletion during the
deployment by using the suffix in the dedicated Phase.

Build Request (ST) Action ChangeMan takes care of the compile procedure the same way as
Kobee.

Script (Ant) Skeleton Procedure Runs the process (e.g., for build or compilation or deploy).

Build# Package Number ChangeMan uses the Package number for versioning files.

Approval Approval ChangeMan allows defining several Approval Groups which are hierar-
chical. Every group may approve one after the other.

39Integrating Kobee and Mainframes

Rollback Demotion ChangeMan allows reversing the result from a promotion/delivery if it is
a member(s) in a Partitioned Dataset (PDS). In the case of DB2 a (auto-
matic) rebind will be executed.

Machine Site ChangeMan only supports other z/OS Logical Partitions (LPARS). The
ChangeMan site is the Local or a Remote LPAR.

Release Number/
Incident Number

Not available ChangeMan does not use Incident numbers. In the Package description
panel, a reason may be entered for all included components.

Archive Package ChangeMan contains components in the Package which is frozen
before the deployment. It designs the version to deploy.

Report Report ChangeMan allows using Batch reports.

Obsolete File Scratch/ Rename ChangeMan assumes the Scratch and the Rename functionalities
during the Promote. Will be supported through a custom phase.

Object-type Library type The objtype determines the processing needed for a certain type.
Kobee can use the same codes.

IKAN Impact
Analysis Tool

Impact-Analysis ChangeMan Impact Analysis covers Source, Copy, JCL, Proc and DSN
names relationships. The Impact Analysis solution from Kobee, per-
mits you to create an Impact Analysis table, based on the information
available in the Version Control Repository. Kobee reports are available
to query that Impact Analysis table and as such you get the same and
more results as with the Change Man Impact Analysis solution.

Not available Merge & Reconcile Kobee does not need to support this because it is a task of the VCR.

As Archive Freeze In relation to this ChangeMan concept, Kobee creates an Archive at
the end of every Build containing all components to deploy. It is this
Archive that used for the next.

Not available Baseline It is a ChangeMan concept that duplicates (or not) the Production Level
used for future package developments considering it is the version 0 as
Reference in Production.Kobee doesn’t assume this concept because
it is the VCR task to define the versions of components. Kobee creates
or presents the Tag for a Build version.

Appendix IV: Available z/OS Kobee Phases
The following table maps the Phases used by Kobee for compiling and deploying components to Mainframe
Environments. Note that for IDMS, a Phase collects the dictionary components and the next phase installs them into
another one.

Phase Action Description

z/OS copy Source to
Target

Build/
Deploy

A dedicated Phase for copying the z/OS Components (Sources or Objects) to the
Kobee Target Environment. This Phase only transfers selected component types.

z/OS copy Sources
before Compilation

Build This Phase transfers via FTP Copybooks, Linkedit Control Cards (LCT cards)
Assembler, COBOL PL/1 Programs and BMS/SDF2 Maps to PDS(s) in the Mainframe
Environment.

40 Integrating Kobee and Mainframes

z/OS Programs
Compilation

Build For each Map (firstly) and each Program (secondly), the Phase generates a com-
pile JCL depending on the Source contents and language using included JCL
models. Next, each JCL is executed by JES under FTP and the resulting Job is
analyzed to know its status. Next, the generated compile Listing, Load-module
and DB2 DBRM, Datacom Plan are transferred to the Kobee Target Environment.
Optionally, DB2 Binds may be generated from models. Note that for CA-Endevor
the Repository will be updated for compiling with it.

z/OS Promotion of
components and
load-modules

Deploy z/OS components in the Kobee archive are transferred to their PDS(s) of the
Mainframe Environment. Exception: the Load-modules which are transferred to
flat files before a generated JCL using included JCL models is executed by JES
under FTP for receiving them in their PDS(s).

z/OS Delete Sources
and associated
objects

Deploy All Sources identified by the “to_be_deleted” suffix are deleted in PDS(s) of the
Mainframe Environment by FTP. Also, the associated Listings, Load-modules,
DBRMs, Plans and DB2 Binds are deleted in their PDS(s). No action in DB2 and
Datacom Databases.

z/OS DB2 Binds
transfers and
activation

Deploy If DB2 is used, Bind files are copied to their PDS(s) and a JCL is generated using
included JCL models and executed by JES under FTP for running these Binds on
the DB2 Database.

z/OS CICS Load-
modules activation

Deploy If there are CICS Maps or Programs, a JCL is generated using included JCL mod-
els, and executed by JES under FTP for running the PHASEIN commands on a
CICS.

z/OS Update
Datacom compo-
nents Promotion

Deploy If there are Plans, the Phase generates a JCL using included JCL models and exe-
cuted by JES under FTP for importing Plans on the Datacom Database.

z/OS Update
Endevor compo-
nents Promotion

Deploy If the CA-Endevor Repository is active on the Mainframe, the Phase generates a
JCL using included JCL models and executed by JES under FTP for moving com-
ponents from the Stage ID to the corresponding Level.

z/OS SQL DB2
updates Execution

Deploy If DB2 is used, DDL and SQL statements may be applied with variable sub-
stitutions as owner, qualifier. After the transfer of DDL and SQL commands
concatenated into 2 members, 2 JCLs are generated using included JCL mod-
els and executed by JES under FTP for running DDL and, next, SQL on the DB2
Database.

z/OS Update
Debugger

Deploy For instance, for the Xpediter tool, this phase copies Xpediter components from
a FILEIO file to another FILEIO using the components list in the Kobee target
environment.

z/OS Copy Pds
Members

Deploy This phase transfers components from PDS(s) of a z/OS environment to PDS(s)
of another z/OS environment using the components list in the Kobee target
environment.

z/OS Update QMF Deploy This phase imports QMF components to a QMF DB2 sub-system using the com-
ponents list in the Kobee target environment.

z/OS Collect IDMS
components

Build For the first build, this Phase generates a JCL using included JCL models that
is executed in the Mainframe Environment by JES under FTP. This one collects
IDMS components and info about date and parent relations in the IDD of devel-
opment. For the rebuild before deployment, the Phase controls the correlation
with the target IDD with execution of another generated JCL.

41Integrating Kobee and Mainframes

z/OS IDMS compo-
nents Promotion

Deploy This phase transfers components to temporary files in the Mainframe
Environment and she generates a JCL using included JCL models that is exe-
cuted by JES under FTP for updating the target IDD.

... (on demand)

Appendix V: Migration to Kobee
Before you can work with Kobee, components must be installed in a VCR. This is a big difference with CMN where the full
VCR is included in Packages, Baseline and SRDeltas PDSs, or with Endevor where components are in workspace PDSs.

IKAN has developed an Ant solution for migrating components from the CMN versioning system to VCR projects
(Subversion or Clearcase). The Tool supports the collect of versions in the SRDeltas, Baseline and Packages for all types
of components based on the CMN project concept. The results are the same versioning levels in the VCR Projects and
same Package definitions that you had in CMN.

The solution supports migrations from classic PDS.

IKAN also has developed an Ant solution for updating VCR Projects and Kobee Packages from other tools (z/OS tools or
Windows/Unix tools) to automatically version and deploy some components using the package process.

Appendix VI: Sample of z/OS compilation JCL
The following JCL is fully generated by the z/OS Compilation Phase used by Kobee for compiling a component into the
Mainframe Environment.

//ADCDMSTC JOB (5145,00000,2233,T),'IKAN',

// MSGLEVEL=(1,1),MSGCLASS=X,

// CLASS=A,REGION=8M

//*

//*XEQ ROUTEID=ADCD

//***

//** COPYING THE PROGRAM IN SOURCE WORK FILE **

//***

// SET SRCOMPIL=SOURCE

//COPYSRC EXEC PGM=IEBGENER

//SYSTSIN DD DUMMY

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DISP=(SHR),

// DSN=IKANALM.DEMOS.TEST.SRCBATCH(DEMO21)

//SYSUT2 DD DISP=(,PASS),DSN=&&&SRCOMPIL,

// UNIT=SYSDA,SPACE=(CYL,(10,10)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)

//SYSIN DD DUMMY

//***

//** COMPILE COBOL2, store object in objlib if compile=ok

42 Integrating Kobee and Mainframes

//** compile listing is stored in IKANALM.DEMOS.TEST.LSTALIB

//***

// SET PARMCOB='LIST,LIB,NOSEQ,NOCMPR2,MAP'

// SET PARMCOB0='DATA(31)'

//***

//** COMPILE THE ELEMENT **

//***

//COBOL EXEC PGM=IGYCRCTL,COND=(4,LT),

// PARM='&PARMCOB0,&PARMCOB'

//STEPLIB DD DISP=SHR,DSN=SYS1.COB2COMP

//SYSIN DD DISP=(OLD,PASS),DSN=&&&SRCOMPIL

//SYSLIN DD DISP=(,PASS),DSN=&&OBJECT,

// UNIT=SYSDA,SPACE=(CYL,(2,2)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(5,3))

//SYSPRINT DD DISP=(,PASS),DSN=&&COMPLIST,

// UNIT=SYSDA,SPACE=(TRK,(10,10),RLSE)

//* DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)

//*

//SYSLIB DD DISP=SHR,DSN=IKANALM.DEMOS.TEST.COPYLIB

// DD DISP=SHR,DSN=IKANALM.DEMOS.INTG.COPYLIB

// DD DISP=SHR,DSN=IKANALM.DEMOS.QUAL.COPYLIB

// DD DISP=SHR,DSN=IKANALM.DEMOS.PROD.COPYLIB

//*

//*

//*

//*

//*

//*

//***

//** COPYING THE LCT MEMBER IN A WORK FILE IF EXIST **

//***

//ALLOCLCT EXEC PGM=IEFBR14

//SYSPRINT DD SYSOUT=*

//LCTFILE DD DISP=(NEW,PASS,DELETE),DSN=&&LCTFILE,

// UNIT=SYSDA,SPACE=(TRK,(1,1,1)),

// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0)

//CREATLCT EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD *

/*

//SYSUT2 DD DISP=(MOD,PASS),DSN=&&LCTFILE(DEMO21)

//SYSIN DD DUMMY

//COPYLCT EXEC PGM=IEBCOPY

43Integrating Kobee and Mainframes

//SYSPRINT DD SYSOUT=*

//INDD00 DD DISP=SHR,DSN=IKANALM.DEMOS.TEST.LCTLIB

//INDD01 DD DISP=SHR,DSN=IKANALM.DEMOS.INTG.LCTLIB

//INDD02 DD DISP=SHR,DSN=IKANALM.DEMOS.QUAL.LCTLIB

//INDD03 DD DISP=SHR,DSN=IKANALM.DEMOS.PROD.LCTLIB

//*

//OUTDD1 DD DISP=(MOD,PASS),DSN=&&LCTFILE

//SYSIN DD *

 COPY OUTDD=OUTDD1

 INDD=INDD00,INDD01,INDD02,INDD03

 SELECT MEMBER=DEMO21

/*

//***

//** LINKEDIT PROGRAM **

//***

// SET PARMLNK='LIST,MAP,XREF,NCAL'

// SET LINKOPT='RENT,AMODE(31),RMODE(ANY),'

//LKEDT EXEC PGM=HEWL,COND=(4,LT),

// PARM='&PARMLNK,&LINKOPT'

//SYSLMOD DD DISP=SHR,DSN=IKANALM.DEMOS.TEST.LOADLIB(DEMO211)

//SYSDEFSD DD DUMMY

//SYSPRINT DD DISP=(,PASS),DSN=&&LINKLIST,

// UNIT=VIO,SPACE=(TRK,(10,10)),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=0)

//* DD DISP=SHR,DSN=IKANALM.DEMOS.TEST.LOADLIB(DEMO211)

//SYSLIB DD DISP=SHR,DSN=IKANALM.DEMOS.TEST.LOADLIB

// DD DISP=SHR,DSN=IKANALM.DEMOS.INTG.LOADLIB

// DD DISP=SHR,DSN=IKANALM.DEMOS.QUAL.LOADLIB

// DD DISP=SHR,DSN=IKANALM.DEMOS.PROD.LOADLIB

//*

// DD DISP=SHR,DSN=DFH320.CICS.SDFHLOAD

// DD DISP=SHR,DSN=DSN810.SDSNLOAD

// DD DISP=SHR,DSN=CEE.SCEELKED

//* DD DISP=SHR,DSN=METASUIT.GEN813.LOADLIB

//* DD DISP=SHR,DSN=SYS1.COB2LIB

// DD DISP=SHR,DSN=SYS1.LINKLIB

//SYSLIN DD *

/*

// DD DSN=&&OBJECT,DISP=(OLD,DELETE)

// DD DSN=&&LCTFILE(DEMO21),DISP=(OLD,DELETE)

// DD *

 IDENTIFY DEMO211('DEMO21/ADCDMST/000003')

 NAME DEMO211(R)

/*

//***

//** TRANSMIT PROGRAM **

//***

//CLEARSEQ EXEC PGM=IEFBR14

//DD01 DD DISP=(MOD,DELETE,DELETE),

// DSN=IKANALM.DEMOS.TEST.DEMO211,

44 Integrating Kobee and Mainframes

// UNIT=SYSDA,SPACE=(TRK,(1)),

// LRECL=80,BLKSIZE=3120,RECFM=FB

//*

//XMITLOAD EXEC PGM=IKJEFT01,COND=(4,LT)

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

 XMIT (ADCD.*) -

 DSNAME('IKANALM.DEMOS.TEST.LOADLIB') MEM(DEMO211)-

 OUTDSNAME('IKANALM.DEMOS.TEST.DEMO211') NOLOG NONOTIFY

/*

//PRTCMPA IF (COBOL.RUN EQ TRUE) THEN

//***

//** PRINT THE COMPILE LISTING **

//***

//PRNTCOMP EXEC PGM=IEBGENER

//SYSTSIN DD DUMMY

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DISP=(OLD,PASS),DSN=&&COMPLIST

//SYSUT2 DD SYSOUT=*

//SYSIN DD DUMMY

//PRTCMPZ ENDIF

//*

//PRTLNKA IF (LKEDT.RUN EQ TRUE) THEN

//***

//** PRINT THE LINKEDIT LISTING **

//***

//PRNTLINK EXEC PGM=IEBGENER

//SYSTSIN DD DUMMY

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DISP=(OLD,PASS),DSN=&&LINKLIST

//SYSUT2 DD SYSOUT=*

//SYSIN DD DUMMY

//***

//** FORMAT THE LINKEDIT LISTING **

//***

//IFSFTLKD IF (NOT ABEND) THEN

//FRMTLKD EXEC PGM=SORT

//SORTSNAP DD SYSOUT=*

//SORTWK01 DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE)

//SORTWK02 DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE)

//SORTWK03 DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE)

//SORTWK04 DD DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE)

//SORTIN DD DISP=(OLD,DELETE),DSN=&&LINKLIST

//SORTOUT DD DISP=(NEW,PASS,DELETE),DSN=&&LISTLKD,

// UNIT=SYSDA,SPACE=(CYL,(5,5)),

// DCB=(DSORG=PS,RECFM=FBA,LRECL=133,BLKSIZE=0)

//SYSIN DD *

45Integrating Kobee and Mainframes

 SORT FIELDS=COPY

 OUTREC FIELDS=(1,121,12X)

/*

//SYSOUT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSMDUMP DD SYSOUT=*

//SYSABEND DD SYSOUT=*

//IFEFTLKD ENDIF

//***

//** COPY THE LISTINGS **

//***

//IFSLST1 IF (NOT ABEND) THEN

//LIST EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT2 DD DISP=SHR,

// DSN=IKANALM.DEMOS.TEST.LSTALIB(DEMO21)

//SYSIN DD DUMMY

//SYSUT1 DD DISP=(NEW,DELETE,DELETE),DSN=&&NULLSEQ,

// UNIT=SYSDA,SPACE=(TRK,(1,1)),

// DCB=(DSORG=PS,RECFM=FBA,LRECL=133,BLKSIZE=0)

//* DD DISP=(OLD,DELETE),DSN=&&PCMPLIST

// DD DISP=(OLD,DELETE),DSN=&&COMPLIST

// DD DISP=(OLD,DELETE),DSN=&&LISTLKD

//IFELST1 ENDIF

//*

//*

//IFSFAIL IF (RC GT 4 OR ABEND) THEN

//FAILURE EXEC PGM=IEBGENER,MAXRC=0

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD *

 JOB 1626 FAILED

/*

//SYSUT2 DD SYSOUT=*

//SYSIN DD DUMMY

//IFEFAIL ENDIF

//PRTLKDZ ENDIF

© Copyright 2013 IKAN Development N.V.

The IKAN Development and Kobee logos and names and all other IKAN product or service names are trademarks of IKAN Development N.V. All other
trademarks are property of their respective owners. No part of this document may be reproduced or transmitted in any form or by any means,
electronically or mechanically, for any purpose, without the express written permission of IKAN Development N.V.

IKAN Development
Motstraat 30

2800 Mechelen, Belgium
Tel. +32 15 238427

info@kobee.io
www.kobee.io

	_GoBack
	_GoBack
	_GoBack
	_GoBack

